
1
Betsy McCall

Monte Carlo Simulation: Estimating Pi

In this handout, we will consider a method for estimating the value of 𝜋 using a Monte Carlo simulation
in both Excel and in Python.

First, Excel. We’ll use this section to set up the
mathematical ideas. If you want to know how the set-
up in Python works, you’ll still need to read this
section.

Consider the unit circle. It has a radius of 1, and so
using the area formula, 𝐴 = 𝜋𝑟2, the area is 𝜋. In
Excel, and many calculator programs, the default
random uniform number is from 0 to 1, we are going
to only consider the first quadrant of the circle where 𝑥
and 𝑦 are both positive. Any point in that unit square
in the first quadrant can be generated by some number
between 0 and 1 for the first component, and a second
such number for the second. Any pair of points inside
the circle will satisfy the inequality 𝑥2 + 𝑦2 ≤ 1, while

any points outside the circle will not. The area inside

the circle is
1

4
 of the total area of the circle, and so is

equal to
𝜋

4
≈ 0.785398 …. compared to the area of

the whole square, which is 1. We will count the
number of randomly generated points inside the
circle and find the ratio to the total number of points

generated:
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑖𝑛𝑡𝑠 𝑖𝑛𝑠𝑖𝑑𝑒 𝑡ℎ𝑒 𝑐𝑖𝑟𝑐𝑙𝑒

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑖𝑟𝑠
. That

proportion will be our estimate for
𝜋

4
, and then we’ll

multiply by 4 to estimate 𝜋.

Note: You could also find the number that falls
outside the circle (it would be a smaller count), but
then you’d have to subtract from 1 to get the
proportion inside the circle. However, we’ll stick
with the direct calculation.

To set up Excel for this simulation, first, we need the
formulas for the random points, our 𝑥 and 𝑦
coordinates. In Excel, we use RAND() to generate
the random numbers between 0 and 1. We need
one each for 𝑥 and 𝑦. The third column is then the
calculation for the distance from the origin: the
 𝑥2 + 𝑦2 value. And then we check to see if it’s inside the circle. In practice, the chance that you will

1

1

-1

-1

1

1

-1

-1

ሺ𝑥, 𝑦ሻ
𝑥2 + 𝑦2 ≤ 1

2
Betsy McCall

get a point that falls exactly on the circle is basically zero, so I’ve just used < instead of ≤. It’s easy to
flip the inequality here, but then also change the results of your condition to =IF(C2>1,0,1) or you’ll be
counting outside the circle instead of inside. This last formula evaluates whether the result of the pair is
inside or outside the circle (1 for is in inside and 0 for is not inside).

When you are finished, copy the formula down until you have enough for an initial simulation. The first
time through, don’t make it too big until you are sure it works, then make it larger (longer). My final
final has 20,000 entries. Excel can handle up to a million lines, but be cautious about this because
depending on the speed of your computer, you could crash Excel (I’ve done that, too), and every time
you do anything, it will recalculate all the random numbers, so it’s best to start small, and then when
everything is set up, then go big.

Once several points are set up, we
want to summarize the results to get
our estimate for 𝜋. We need to count
the number of 1’s in the D column,
divide by the total number of runs (the
number of pairs attempted), and then
convert that to our estimate. I’ve also
calculated the percent error for the
run.

The new formulas look like this:

I’ve set up the sum and the denominator in the proportion to
consider the whole column, so that when the simulation gets
extended to a larger number of attempts, the denominator will get updated automatically.

For a small run of just 25 points, the
estimates vary wildly. One such run
gave me, which isn’t great. For a
run of 20,000, though, I got
something a bit better.

This latter one round to 3.14 so we’ve
got about 2 decimal places accuracy.
We need more runs if we want a better
estimate.

3
Betsy McCall

One way to do this is to extend the table, but there is a more compact way to do this. We can use the
Data Table to record the results of various simulations and then since they are all the same size, average
them together to obtain a result equivalent to a larger simulation. Excel will actually calculate the
simulations, but they will take up less space in the sheet than just copying out the rows.

To set up your data table, first I created a column with the number of simulation runs (this is optional,
but useful later when you want to count them easily). And a second column beside it with the outcome
of the simulation. Write a formula in the top entry pointing at the estimate for 𝜋 in your previous
calculation.

We’ll just do 10 simulations for now to keep the spreadsheet updating relatively quickly.

First, highlight the column starting at G2 and down to H11. Then, find the Data Table option. In more
recent versions of Excel, it’s under the Data tab, and What If Analysis.

The following dialog box will pop up. We aren’t really adding any
inputs, so you can leave the Row input cell blank, and the Column
input cell, just click on a blank cell off to the side in the I or J
columns.

4
Betsy McCall

Excel will then recalculate all the formulas, here 10 times, one for each position in the table, and record
the results.

If you then average these results, you can obtain an estimate of 𝜋 equivalent to 25 × 10 = 250
simulations. In my attached Excel sheet, my initial simulation was 20,000 pairs, and I did 200 times that
many runs in my table producing the equivalent of 20,000 × 200 = 4,000,000 pairs of points. You can
then do additional Data Tables based on the results of your data table and continue multiplying. I did a
second data table from the result of the first, to obtain an estimate from 20,000 × 200 × 200 =
800,000,000 pairs to obtain three decimal places accuracy.

When you open the Excel file, give it time to calculate all 1.6 billion random numbers. Depending on the
speed of your computer, that may take a little while.

In Python. Python is a little different than Excel, but the math is fundamentally the same. I built my
simulation in Jupyter Notebook. I’m using the Anaconda Release of Python 3. All the libraries used are
standard. Start by importing some needed libraries.

Then, we’ll need to write a little program to do the calculations. I’ve written this one so that we can
adjust the number of simulated pairs we are calculating.

5
Betsy McCall

Let’s break down the steps here a little bit. First, we define the function and its inputs. Sims will be the
number of simulations to run, and the name of the function is estPi. The next line sets the count
variable to be zero before getting started.

Next, we use a loop to run through the required number of simulations. Each time through the loop two
uniform random numbers are generated in the range ሺ0,1ሻ, just like in Excel, and the radius (the
distance from the origin) is calculated. The next if statement checks, like Column D did in Excel, to see if
the distance calculation puts it inside the circle. If so, the count adds 1, if not nothing happens. Then
the loop repeats the simulation.

Finally, the count is divided by the total number of simulations and multiplied by 4 to obtain an estimate
for 𝜋.

To run the simulation, run the function with the number of simulations to do, here it’s 100. The output
provides the estimate.

If you run a larger simulation, like 100,000,000 times, expect to wait a bit for the calculation to go
through. If you set the output equal to a variable, you can then calculate the error of your estimate.

My Excel sheet converted errors to percentages, but here, I just left them as decimals.

One note about Python is that you can’t use scientific notation for simulation number unless you adjust
a program a little. Python will interpret something like 10𝑒8 as a float, and not an integer, and the loop
requires an integer.

You might be wondering why we might want to estimate 𝜋 like this. The truth is that there are many
better ways to estimate 𝜋. But this one is easy to understand, whereas some of the others require
significantly more mathematics to know what is going on, but they do yield results with less
computational intensity.

