Name

Instructions: Record final answers and attach pages with work. All work must be shown in order to receive credit. Exact values should be use unless stated otherwise.

- I. Given the equations below, find the following for each equation:
 - a. Is it a function? If so, write it in function notation.
 - b. What is its domain?
 - c. What is its range? [Hint: sketching a graph may help, or inverse function methods.]
 - d. Find any intercepts (x & y).
 - e. Test for symmetry (x-axis, y-axis, origin).
 - f. Sketch the graph by plotting points (at least six, may require more)

2. Solve the system of equations. Compare your algebraic and graphical results.

a.
$$\begin{cases} 2x - 3y = 13\\ 5x + 3y = 1 \end{cases}$$

b.
$$\begin{cases} y = x^3 - 4x \\ y = -x + 2 \end{cases}$$

- 3. Find the equation of the line connecting the points (-3,-4) and (1,4).
- 4. Evaluate the function for the specified values. $f(x) = x^3 x$
 - a. f(1) b. f(-3) c. f(t-1)

$$\frac{f(x)-f(1)}{x-1}$$

- 6. Apply the following transformations to the functions $f(x) = x^2$. Write the new equation in each case. For each part, apply only the transformation stated in that part.
 - a. Shift down 3 units
 - b. Shift left 4 units
 - c. Compress the graph (in y) by a factor of your choosing.
 - d. Reflect the graph.
 - e. All of the above in the same graph.
- 7. For $f(x) = \sqrt{x} + 1$, $g(x) = 4x + x^2$, $h(x) = \sin(x)$ find a. $f \circ g$
 - b. $g \circ h$
 - c. $g \circ g$
 - d. $g \circ f \circ h$

- 8. Find the inverse function of $f(x) = \frac{x+2}{x}$.
 - a. Does the domain of f need to be restricted for an inverse function to exist?
 - b. State the domain and range of f.
 - c. Sketch the equation and its inverse on the same graph.
 - d. Find $f \circ f^{-1}$

9. Solve for x.

a.
$$18^2 = 5x - 7^2$$

b.
$$x+3^{\frac{4}{3}}=16$$

- 10. Give the domain and range of the following functions.
 - a. $f(x) = e^x$
 - b. $g(x) = 3e^{-2x} 1$

c.
$$h(x) = \ln(x)$$

d. $k(x) = -\ln(x-1)$

$$e. \quad m(x) = \ln\left(\frac{1}{x-1}\right)$$