Instructions: Record final answers and attach pages with work. All work must be shown in order to receive credit. Exact values should be use unless stated otherwise. Simplify all results.

- 1. Find the derivative of the functions using the product rule and the quotient rule. a. $f(x) = \sqrt{x} \sin x$
 - b. $g(s) = \sqrt{s} \ 4 s^2$ verify your result by distributing and using the power rule
 - $c. \quad h(t) = \frac{t}{\sqrt{t} 1}$
 - **d.** $k(x) = x^2 + 1^2$
 - **e.** $m(x) = x^2 \left(\frac{2}{x} \frac{1}{x+1}\right)$
 - **f.** $n(t) = x^2 x + x^2 + 1 + x^2 + x + 1$
 - $\mathbf{g.} \quad p(k) = \frac{1}{k} 10 \csc k$
 - h. $q(n) = 2e^n \cos n$
 - i. $r(\varphi) = \left(\frac{\varphi+1}{\varphi+2}\right) 2\varphi 5$
- 2. Find the equation of the tangent line(s) to the graph of $f(x) = \frac{x}{x-1}$ that passes through the point (-1,5).
- 3. Determine where there exist any values of x in the interval $[0,2\pi)$ such that the rate of change of f(x)=sec(x) and the rate of change of q(x)=csc(x) are equal. If so, find the point(s).

4. Find the second derivative of the functions.

$$a. \quad f(x) = \frac{x^2 + 2x - 1}{x}$$

b.
$$h(t) = e^t \sin t$$

- 5. List 4 possible notations for the 2^{nd} derivative of a function f.
- 6. Develop a general rule for $xf(x)^n$ where f is a differentiable function of x. Start with n=1 (i.e. xf(x)).
- 7. Find the derivatives of the functions.

a.
$$f(x) = -3\sqrt[4]{2-9x}$$

b. $g(t) = \sqrt{\frac{1}{t^2 - 2}}$ c. $k(x) = x(3x - 7)^3$ d. $h(v) = v^2 \tan\left(\frac{1}{v}\right)$ e. $m(p) = \ln\left(\frac{e^p + 1}{e^p - 1}\right)$ f. $n(x) = x^2 e^{2x} - 2x e^x + 2e^x$ g. $a(t) = \frac{-\sqrt{t^2 + 4}}{2t^2} - \frac{1}{4} \ln\left(\frac{2 + \sqrt{t^2 + 4}}{t}\right)$ h. $y = 5^{x-2}$

$$b(x) = \log_{10}(2x)$$

- 8. Determine the point(s) at which the graph of $f(x) = \frac{x}{\sqrt{2x-1}}$ has a horizontal tangent line.
- 9. Find the first and second derivatives implicitly. Evaluate both at the indicated point. Use the first derivative to find an equation of the tangent line at the given point.
 - **a.** $x^3 y^2 = 0$ (1,1)
 - **b.** tan(x + y) = x (0,0)
 - c. $3e^{xy} x = 0$ (3,0)
 - **d.** $y^2 = \ln x$ (e,1)
- 10. Find the normal line to the curve (perpendicular to the curve/tangent line) at the given point. $x^2 + y^2 = 9$ at $2,\sqrt{5}$.
- 11. Use logarithmic differentiation to find $\frac{dy}{dx}$ of
 - **a.** $y = (1+x)^{\frac{1}{x}}$
 - b. $f(x) = \sqrt{(x-1)(x-2)(x-3)}$ compare the process to the non-logarithmic process for finding the derivative (i.e. using the chain rule and product rules). Which do you prefer?
- 12. Show that the two equations are orthogonal at their intersection points. (i.e. their tangent lines are perpendicular).

$$x^{3} = 3(y-1)$$
 and $x(3y-29) = 3$