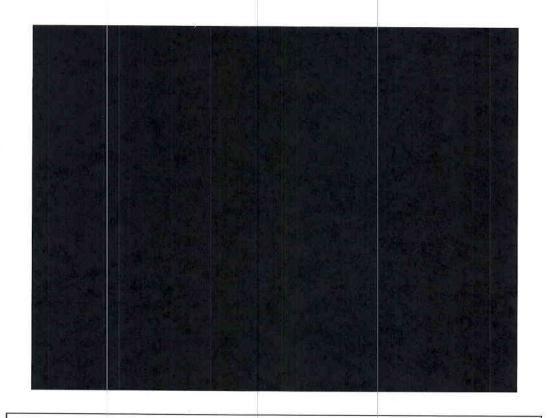
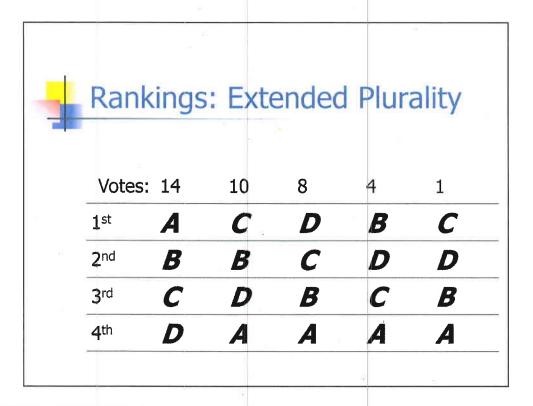

Here is an interesting ele	ection		
*			
		9	

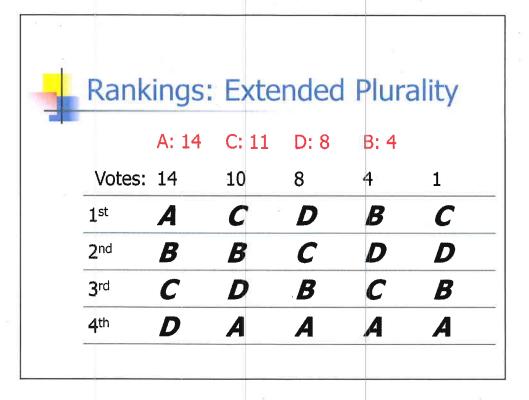

An Interesting Election

- Be sure you can do the math for the following:
 - Plurality gives the election to C
 - Borda Count gives the election to A
 - Plurality with Elimination gives the election to B
 - Pairwise comparison results in a 3-way tie!

Try this tonight. Be certain you	can reproduce a	l these results
>		
a a		
e.		
2		

×	» »	Ĭ	
		v	
		\$	
a a			


We'll talk about rankings now. For example, our club will have an election, and the winner will be president, the 2nd will be VP and the 3rd will be treasurer.


Rankings One

- If we need to rank all the candidates in an election, there are two ways to accomplish this.
- The first is a direct extension of the counting methods we've used


Two ways to do this	
36	
	v 1
± 8	· ·
	7

Look at only 1st place votes in this election. We have...

A with 14 is 1st			
C with 11 is second			
D with 8 is third			
And B with 4 is 4th			
We call this method Ranking by	Extended Plura	lity.	
26			
# <u>B</u>			
'			
	₹1		
		0.00	

We can also extend the Borda Count method. We go through all the Borda steps as usual...

Rank	ings:	Exte	nded	Borda	a
	B: 106	C: 104	D: 81	A: 79	
Votes:	14	10	8	4	1
1 st	A	C	D	B	C
2 nd	В	B	C	D	D
3 rd	C	D	B	C	B
4 th	D	A	A	A	A

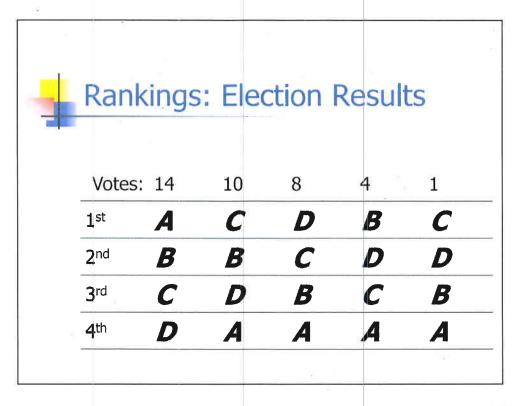
and find that:	
B has 106 points and is 1st	
C has 104 and is 2 nd	2
D has 81 and is 3 rd	*
And A has 70 points and is 4 th	
X	

Rankings: Extended Plurality with Elimination

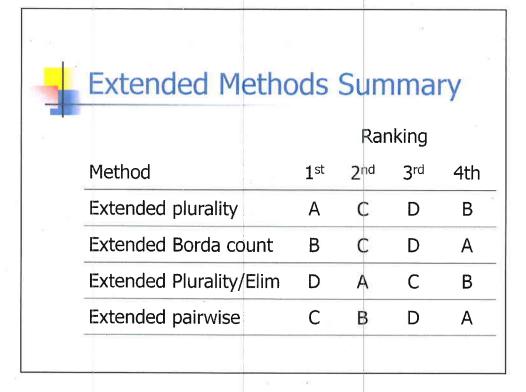
We rank the candidates in the reverse order in which they are eliminated:

Rank	Candidate	Eliminated
1 st	D	(not)
2 nd	Α	Round 3
3 rd	С	Round 2
4 th	В	Round 1

To extend plurality with elimination, we simply keep track of the order in which candidates are eliminated, and that is the reverse of the final ranking.


Rankings: Extended Pairwise Comparisons

We use the total number of points in their comparisons with other candidates:


Rank	Candidate	Points
1 st	С	3
2 nd	В	2
3 rd	D -	1
4 th	Α	0

For extended pairwise, we have a set of points that we can use to arrive at a ranking.

Here's the election		
%		55
		2
		:1
a		
	.a. #3	± ±

And here are the rankings by the 4 different methods. Make certain you can do the math to arrive at this table...

Rankings Two

- The second method of ranking all the candidates is called *Recursive Ranking*.
- The normal method is used to determine the winner: that candidate is ranked 1st.
- That candidate is then eliminated, and the process repeated to find the 2nd place candidate, and so forth...

The second method of ranking all the candidates is called *Recursive Ranking*.

The normal method is used to determine the winner: that candidate is ranked 1st.

That candidate is then eliminated, and the process starts all over again to find the 2nd place candidate, and so forth...

Recursive Ranking

 This can be done with any of the methods. Let's start looking at it with plurality.

Here we go	0,				
26					
9					
			,		
				¥*	
13		90			

Step 1: A is 1st with 14. Now eliminate A

Votes:	14	10	8	4	1
1 st	A	C	D	B	C
2 nd	B	B	C	D	D
3 rd	C	D	B	C	B
4 th	D	A	A	A	A

Step 2: B wins with 18. Now eliminate B

Vote	s: 14	10	8.	4	1
1,st	В	C	D	B	C
2 nd	C	B	C	D	D
3 rd	D	D	В	C	B

Step 3: C wins with 25. D is last.

Rank	Candidate	
1 st	A	
2 nd	В	
3 rd	С	
4 th	D	

Rankings: Summary

- If we compare the results of a recursive method with the results of the same method extended, we often find very real differences. So which is better?
 - In real life, the extended methods are almost always used.
 - BUT, there really is no simple answer to the question.

Voting Summary

- Which method to use?
- We've discussed four fairness criteria:
 - The majority criterion
 - The Condorcet Criterion
 - The Monotonicity Criterion
 - The Independence-of-Irrelevant-Alternatives Criterion.

Which method to use? A big question...

We have discussed 4 fairness criteria:

- •The majority criteria
- •The Condorcet criteria
- •The monotonicity Criteria
- •The Independence of Irrelevant Alternatives criteria.

[make certain

they know each and when it applies]

Voting Summary

- A fair voting method should satisfy all of those criteria.
- None that we've looked at do

It seems reasonable that that there should be a way to satisfy all four criteria.

We haven't seen it yet in here...

Criteria Violations						
		Violations				
Method	lajor- ity	Con- dorcet	Mono- tonic.	IIA		
Plurality		1		1		
Borda Count	V	√		V		
Plural w/Elim		V	1	a V		
Pairwise Comp			1	√		

Here is a summary of the kinds not necessarily do occur).	of violations that can occur (note:
26	
	v .
	^ × =

So what method is best?

- For democratic elections involving three or more candidates, there is no voting method that satisfies the four criteria.
- This is **Arrow's Imposibility Theorem**, proven by Kenneth J. Arrow in 1949: "It is mathematically impossible for a democratic voting method to satisfy all of the fairness criteria."

There is no best voting method.

This was proved by Kenneth Arrow in 1949.