Instructions: Show all work. Use exact answers or appropriate rounding conventions. If you use your calculator, you can show work by saying which calculator commands you used.

1. Construct a plot of ln(x) vs. ln(y) for the data below and construction a linear regression equation on the transformed variables.

х	5	10	15	20	25	30	45	60
y	16.3	9.7	8.1	4.2	3.4	2.9	1.9	1.3

In(4) -> L3 In(6) -> L4 Linkey L3, L4, 7,

2. Construct a quadratic regression equation for the data below.

X	1	1	2	4	4	4	6
У	23.0	24.5	28.0	30.9	32.0	33.6	20.0

Quad Reg

$$y = -1.715 \times^2 + 11.406 \times + 13.636$$

3. For the regression model $y=5.0+0.1x_1-0.5x_2-.13x_3-.01x_4+\epsilon$ where y is maximal oxygen uptake, x_1 is weight, x_2 is years of age, x_3 is time necessary to walk a mile in minutes, and x_4 is heart rate at the end of the walk. Interpret the coefficients $\beta_1,\beta_2,\beta_3,\beta_4$.

Least rate increases 0.1 units for each pound (or kg?) quaight gained; it decreases at 0.5 beats govench year older; decreases by .13 beats for lach minute increase in time to walk a mile; and decreases by .01 beats for each increase in heat rate at the ord of the walk.