Math 2568, Exam #3 — Part |, Fall 2014 Name K_EY

Instructions: Show all work. Use exact answers unless specifically asked to round. Justify answers will
work or you may receive no credit. You may not use a calculator on this portion of the exam.
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1. Consider the stochastic Markov chain matrix given by the matrix 4 = [ 35 ‘85

J . Calculate the

equilibrium vector of the system. (6 points)
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2. Find the eigenvalues and eigenvectors of the matrices below. Be sure to clea rly indicate the
characteristic equation, and which eigenvalues and eigenvectors go together. (12 points)
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3. Forthe matrixA = |~3 4 9}, with eigenvalues A, = 3, 1, =@nd eigenvectors 7; = [OJ,'v_z’ =
0 0 3 1
0 -1
[1 ,V3 = | 3 |, find a similarity transformation matrix P so that A can be diagonalized. Clearly state
0 0

both P and D. (7 points)
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4. Given the vectors U = [—1} U= [ 6 ] find the following.
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a. v-u (2 points)
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. Aunitvector in the direction of . (2 points)
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d. Find the distance between # and #. (3 points)
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e. Areiand ¥ orthogonal? Why or why not? (2 points)
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5. Determine if each statement is True or False. (1 point each)
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Every eigenvalue has only one corresponding eigenvector.
An nxn matrix will always have exactly n real eigenvalues.
If. A and B are row equivalent, then their null spaces are the same.
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Alinearly independent set that spans the space in a subspace H is a
basis for H.

If the steady-state vector for a stochastic matrix is unique then the
Markov Chain matrix has no absorbing states and has communication
between all available states.

A matrix is invertible if and only if 0 is an eigenvalue of A.

The eigenvalues of a matrix are always on its main diagonal.

The eigenspace of an nxn matrix with n distinct real eigenvalues always
form a basis for R”.

A trajectory of a dynamical system is a set of ordered vectors X, that
tracks the population values of a system over time.

The elementary row operations of A do not change its eigenvalues.
If Ais invertible, then A is diagonalizable.

The real eigenvalues of a discrete dynamical system either both
attract to the origin or both repel from the origin.

AB is always the same as BA.

An inner product space is a vector space with a specific inner product
defined on it.

The vectors in Col A are orthogonal to vectors in Nul A, dx.&&uud’ Scae
&fdaw

N + 19112 = ||T + |2 then T and & are orthogonal.
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Math 2568, Exam #3 ~ part II, Fall 2014 Name K,E \f

Instructions: Show all work. Use exact answers unless specifically asked to round. Justify answers will
work or you may receive no credit. You may use a calculator on this portion of the exam.

i —32], with eigenvalues 1 = 2 + i, with eigenvectors 7 = [_1] + [i1] ;

i.
1 0

Find one similarity transformation p that will transform B=PCP™, where C is a scaled rotation matrix.

State both P and C. (6 points)

azr;.i b=\ [~||] N [~(‘3]£
RIS e

1. a. Forthe matrix B = [

b. Use the C matrix from part a, and find the scali
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2. Consider the discrete dynamical system given by the matrix A =[ J
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a. Determine the behaviour of the origin for this system: is it a repeller, an attractor or a
o v |
saddle point? (7 points)
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||tial condition of the population as x, = [g], find 10 points of the trajectory for

the system and list them here. (5 points)
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C. Plot the points on a graph together with the eigenvectors of the system. Make sure your

graph is big enough to clearly read it. Connect the trajectory with a curve and an arrow
indicating the flow of time. (8 points)
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3. Solve the differential equation ¥’ == [_7 10] X.

-4 5
a. State the general solution. (6 points) Stt—2i - s\
{“q’ "7\\)(‘3%&-\-‘-(0 =0 _ = Sel =%
~35 4 ANt NEHYo o ~. ;2‘ Dol ez Ez)re
| T e = ¥
At2A+S=0 xe =¥ |
"'21‘_;}[—‘-—% - -2t W . __,\124- Ky = é—ﬁ;/-!—fq/ -\

‘ : - 2k 4+ a2t
By | )7 C N L ot ] Boo t 3isiadt micon
[7’16 (CQD2++IS|A)-'1') =€ dcoot * Zisin2t

-3 3 cpo 24 +SinUE | -k C 3rinlk ~ a0 | -t
X =G 2 cap2t ® e 2.5t

b. Determine the behaviour of the origin for this system: is it a repeller, an attractor or a
saddle point? (7 points)
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C. Plot the eigenvectors on a graph and plot several sample trajectories of the system. (8 points)
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4. Determine if the functions f(x) = 4 + x and g(x) =5 — 4x? are orthogonal under the inner
product (f, g) = f_qf(x)g(x)dx (8 points) |
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5. Given the function f(t) = 3t + t?, find a function in P, orthogon%l to f(t) under the inner product
(fL9) = f f(®)g(t)dt = 0. (9 points)
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6. Answer each of the equations below as completely as possible. S{S points each)
a. How does one determine the dimension of a vector space (or subspace)?
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b. Explain why the origin acts as an attractor when the |A| < 1 for a discrete dynamical system,
but A < 0 is needed for an attractor in an ODE system.
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c. Explain why the similarity transformation that diagonalizes A, also diagonalizes e
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