a. Write the system as a matrix equation. (3 points)
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C. Use the solution you obtained and graphicall
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combination of the vectors [J and [ 1‘]
graph. (6 points)

Y represent it on g graph as the linear

- Be sure to show the coordinate gridlines on your
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2 —1 4|byany means. (7 points)
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2. Find the determinant of the matrix 4 =

12 -1/2 10
3. Find the QR factorization of the matrix A, given that Q = 1N2  1/2 and A = [1 1]. q]
0 1 01
other words, find R. (8 points) '
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4. For the matrix 4 = [:3? 141 j lg J The eigenvalues are 1 = 1,2,3 Find the
2 =2 =2 -1

eigenvectors corresponding to each eigenvalue and determine if the matrix is diagonalizable.

(20 points)
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Suppose thatdet(C) = 16. Find the determinant of the matrix after the following row
operations. (5 points)
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6. Determine if the set formed by polynomials of the form p(t) = a+ bt +t2
Ifitis, prove it. Ifit is not, find an example to the contrary. (6 points each)
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7. Consider the orthogonal basis for R3 given by {[ 1 ],[ 3 ],[ 1 H Use the property of
3 =11 13

5
Orthogonality to find the coordinate representation of the vector ¥ = [ 7 } in this basis. [Hint:

-1
Nno matrices are required.] (15 points)
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1. Given the vectors 7 = [_21],17 = l g innd the following.
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a.  Aunit vector in the direction of #. (4 points)
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b. Find the distance between and . (7 points)
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Delermene 16

8. Show-that the polynomials f(t) = 1 — 3¢, and g(t) =4+ 2t2 are orthogonal under the inner
product< f, g > = f_llf(t)g(t)dt. (10 points)
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9. Determine if the following sets of vectors are linearl
answer in each case. (5 points each)
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y independent by inspection. Justify your
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equilibrium vector of the system. (5 points) o
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10. Consider the stochastic Markov chain matrix given by the matrix A = b J Calculate the



11.
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Suppose matrix A is a 9x5 matrix with 4 pivot columns. Determine the following. (10 points)

dim Col A = ‘ dim Nul A = t
dim Row AT = };t If Col A'is a subspace of R™ ,thenm = l

Rank A = ﬁ__ If Nul Ais a subspace of R™, then n = ; i

Determine if each statement is True or False (3 points each)
a. /T F If vectors v7, 7 Uy, span a subspace W and if ¥ is orthogonal to each
L~ N
UijI"j 1. p,thenme

b. T If ¥ is in a subspace W, then the orthogonal projection of y onto W is y/

: itself.
i+ C
C. T Q Every eigenvalue has only one corres ponding eigenvector.

If Aisa 7x5 matrix, then the transformation ;c = A;c can be onto but not

one-to-one. ! ég_ m

e T If a system of equations has a free variable then it has a unique solution.

f. (a The complex eigenvalues of a discrete dynamical system either both
attract to the origin or both repel from the origin,

g.

If two vectors are orthogonal, they are linearly independent. ( ”‘-'S

The third standard basis vector éginPyist3,

h. (1)
i. Q The null space of a matrix is a subspace of the codomam of the matrix.
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If Ais invertible, then A is diagonalizable.

=~

A matrix is invertible if and only if 0 is not an eigenvalue of A,

Q

If the columns of A are linearly independent, then the equation 4% = p
has an infinite number least-squares solutions, or none at all.



m. @ F A least-squares solution of 4% =

bis the point in the column space of A
closest to b.
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Math 2568, Final Exam|— Part Il, Fall 2014

Instructions: On this portion of the exam, you may use a calculator to perform elementary matrix

operations. Support yaur answers with work (reproduce the reduced matrices from your calculator) or
other justification for full credit.

1. Find a least squares solution for the set of points
{(1,0.7),(2.1,3.4),(2.2,4.8),(3.1,11.7), (4.4,19.3), (5.3,25.8), (6.7,38.2)} to satisfy the

equation y = fy + B1x + Box? + B3x3 . Be sure to write the matrices employed, any
equations, and|the final regression function fory. (10 points)
|

by V)

D} il
2 4»\ 213 ~ U - B R L
A: | 22 W 22— | L gg @‘(#)kiﬂ{‘\o =K - eF(
\ 2> .
| 3 3lq vl W3 [.]be
P :%‘53 e ~.o5
|6 62" A 38.2

\ = —1SM 4 FeRHK + 1 6Lk . OST X

3 1
2. Given the vectors b, = [33 and b, = {_23 , find two more vectors orthogonal to these (and
2 -8

each other) to make an orthogonal basis for R*. (12 points)
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3. The set 7 — Lo, 2 forms a basis for 13
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J OH, and the vector j = 23} decompose this vector intoy =
2

wy. (10 points)
' A
1= %)
%

>, - ':r"'\'?.'ra-i-o I{],
W = o -
J= Vot 3

b

4. Given the basis of

=
<

TS o=
Il
[ e T G
—
_—
=

5/7,’+yj’with)7”’=

ol
ST ) (et

N-CC o~ —

+ oto-3to o -3 i
L+ Y4+0+0 lz.]: s e 2
s

i
X

= [z:h] + {: ;//L] Y
R ) = | M| = y‘
4 g V’; '




1 3 0 5 0 3
5. Assumethat A= L &-1l 282 . Find a basis for the null space of A. (8 points)
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round your ans

Xo
-aph below, solve the system for the circuit flowing through each loop. You may
ers to three decimal places as needed. (10 points)
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7. The following
may use examp

must contain words, (4 points each)

a. Give an example of 3 5X5 matrix with a non-trivial solution.
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b. Why must an nxn matrix have n distinc

t eigenvalues to guarantee that the eigenspace
|
spans R"?
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C. Give two properties of the invertible matrix theorem an+ explain why they must be
equivalent to each other.
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d. Give anexa I'nple of a stochastic matrix that has more than one equilibrium vector.
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Explain
used in
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f.  Explain

saddle

(4

g. What an|
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why the equation y=mx+b is not a linear transformation under the definitions
this course.
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why the complex eigenvalues of a discrete dynamical system cannot produce a
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’ hy being able to diagonalize 3 matrix is so important
Computationa ly.
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Explain the relationship betwee

N avector y in R", w a subspace of R, 7
vectors in W, as described by th
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