MAT 223, Central Limit Theorem on Dice (Version 1)

1. In the Monte Carlo Modeling project we collected successes for the same rule with different

Name

Sample Size (n)	5	10	20	25	40	=	50	100	200	1000
Proportions	0.4	0.6	0.3	0.48	0.5	0	.48	0.45	0.51	0.49
	0.6	0.6	0.5	0.72	0.525	0	.58	0.38	0.495	0.49
	0.4	0.7	0.7	0.48	0.6	0	.52	0.55	0.51	0.304
	0	0.5	0.45	0.64	0.55	0	.52	0.47	0.465	0.515
	0.4	0.5	0.4	0.4	0.5	0	.62	0.45	0.475	0.510
Standard Deviation (Empirical)	:219	, 08	.148	.131	.042	.0	055	,061	.020	.012
Standard Deviation (Central Limit Theorem)	, 224	.158	,112	. 10	»079	٥0	71	.05	, 035	.016

- 1. In the Monte Carlo Activity, we estimated the standard deviations. Use your calculator to find them now using the 1-VarStats feature and complete the table.
- 2. According to the Central Limit Theorem, the standard deviation of a sampling distribution should be $\hat{\sigma} = \sqrt{\frac{p(1-p)}{n}}$. Use p = 0.5 to calculate this value for each value of n and add these values to the table.
- 3. How close did you get?

Close in some cases, not so much in others. most likely due to small sample size

4. One group used a proportion of p = 0.25 for their chance of success and obtained a power regression equation of $y = 0.135x^{-0.488}$. What does the coefficient 0.135 represent in this equation? What would we expect it to be based on the Central Limit Theorem?

Vp(1p) = J.25..75 = .433 expected value Jot plip)

5. Can you find the value for the data above? How does it compare?

p(1-p) = (.5)(.5) = .5

Using Pur Reg. 4=.478×-1537 y=.499×-.499 From empired y=.499× for CLT.