MTH 266, Homework #4, Fall 2018 Name

Instructions: Write your work up neatly and attach to this page. Use exact values unless specifically asked to round. Show all work.

- 1. For each statement below determine if it is true or false. If the statement is false, briefly explain why it is false and give the true statement.
 - a. If **f** is a function in the vector space V of all real-valued functions on R and if $\vec{f}(t) = 0$ for some t, then **f** is the zero vector in V.
 - b. A vector is an arrow in three-dimensional space.
 - c. A subset H of a vector space V is a subspace of V if the zero vector is in H.
 - d. A subspace is also a vector space.
 - e. A vector is any element of a vector space.
 - f. R^2 is a subspace of R^3 .
 - g. A subset H of a vector space V is a subspace of V if the following conditions are satisfied: i) the zero vector of V is in H, ii) \vec{u} , \vec{v} and $\vec{u} + \vec{v}$ are in H, and iii) c is a scalar and \vec{cu} is in H.

h. The points in the plane corresponding to $\begin{bmatrix} -2\\5 \end{bmatrix}$ and $\begin{bmatrix} -5\\2 \end{bmatrix}$ lie on a line through the origin.

- i. An example of a linear combination of vectors $\vec{v_1}$ and $\vec{v_2}$ is the vector $\frac{1}{2}\vec{v_1}$.
- j. Any list of 5 real numbers is a vector in R^5 .
- k. If $H = span\{\vec{b_1}, ..., \vec{b_n}\}$, then $\{\vec{b_1}, ..., \vec{b_n}\}$ is a basis for H.
- I. The columns of an invertible nxn matrix form a basis for R^n .
- m. The basis is a spanning set that is as large as possible.
- n. In some cases, the linear independence relations among the columns of a matrix can be affected by certain elementary row operations of the matrix.
- o. A linearly independent set in a subspace H is a basis for H.
- p. If a finite set S of nonzero vectors spans a vector space V, then some subset of S is a basis for V.
- q. The null space of A is the solution set of the equation $\vec{Ax} = \vec{0}$.

- r. The null space of an mxn matrix is in \mathbb{R}^m .
- s. The kernel of a linear transformation is a vector space.
- t. A null space is a vector space.
- u. Col A is the set of all solutions of $\vec{Ax} = \vec{b}$.
- v. The standard method for producing a spanning set for Nul A, described previously, sometimes fails to produce a basis for Nul A.
- w. If B is an echelon form of a matrix A, then the pivot columns of B for a basis for Col A.

2. Write
$$\vec{v} = \begin{bmatrix} 5\\3\\-11\\11\\9 \end{bmatrix}$$
 as a linear combination of $\begin{bmatrix} 1\\2\\-3\\4\\-1 \end{bmatrix}, \begin{bmatrix} 1\\2\\0\\2\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\1\\1\\-4 \end{bmatrix}, \begin{bmatrix} 2\\1\\-1\\2\\1 \end{bmatrix}, \begin{bmatrix} 0\\2\\1\\-1\\2\\1 \end{bmatrix}, \begin{bmatrix} 0\\2\\1\\-1\\-1\\-1 \end{bmatrix}$. Is the solution unique?

- 3. For each of the sets below, determine if the set is a vector space or subspace.
 - a. $H = \left\{ \begin{bmatrix} a \\ b^2 \end{bmatrix}, a, b real \right\}$ b. $V = \left\{ \begin{bmatrix} a \\ b \\ c \end{bmatrix}, a = b + c \right\}$ c. $T = \left\{ \begin{bmatrix} a & 2 \\ 0 & b \end{bmatrix}, a, b real \right\}$
 - d. $C = \{the set of all complex numbers of the form a + bi, where a, b are real\}$
 - e. $J = \{the set of all polynomials such that <math>p(t)$ divides evenly by $(t 1)\}$ [Hint: write p(t) in factored form, with the factor (t 1) pulled out. What does the other factor look like?]
 - f. $0 = \{ the set of all odd functions: f(-x) = -f(x) \}$
 - g. *W* is the set of all nxn matrices such that $A^2 = A$.
 - h. Q is the set of all exponential functions
 - i. S is the set of all $n \times n$ singular matrices
- 4. Describe the possible echelon forms of the matrices below using 0, 1 for the pivot and * for all other entries.
 - a. A is a 2x2 matrix with linearly independent columns.
 - b. A is a 4x3 matrix, $A = \begin{bmatrix} \vec{a_1} & \vec{a_2} & \vec{a_3} \end{bmatrix}$, such that $\{\vec{a_1}, \vec{a_2}\}$ is linearly independent and $\vec{a_3}$ is not in $span\{\vec{a_1}, \vec{a_2}\}$.
 - c. How many pivot columns must a 6x4 matrix have if its columns are independent? Why?

5. List 5 vectors in the span of $\begin{bmatrix} 1\\3\\-2\\0 \end{bmatrix}$ and $\begin{bmatrix} -4\\0\\1\\-1 \end{bmatrix}$.

6. Determine if the columns of each matrix spans R^4 .

a.	4	-5	-1	8]		5	11	-6	-7	12
	3	-7	-4	2	h	-7	-3	-4	6	-9
	5	-6	-1	4	D.	11	5	6	-9	-3
	9	1	10	7		3	4	-7	2	-9 -3 7

7. For each of the sets of bases for R^3 , determine which ones are linearly independent and which ones span R^3 .

a. $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$	c. $\begin{bmatrix} 2\\-1\\1 \end{bmatrix}, \begin{bmatrix} 2\\-3\\2 \end{bmatrix}, \begin{bmatrix} -8\\5\\4 \end{bmatrix}$
b. $\begin{bmatrix} 1\\2\\-4 \end{bmatrix}, \begin{bmatrix} 4\\3\\6 \end{bmatrix}$	$\mathbf{d} \begin{bmatrix} 1\\-2\\3 \end{bmatrix}, \begin{bmatrix} 0\\3\\-1 \end{bmatrix}, \begin{bmatrix} 2\\-1\\5 \end{bmatrix}, \begin{bmatrix} 0\\0\\-1 \end{bmatrix}$

8. Find a basis for the space spanned by the given vectors. $\begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \end{bmatrix} \begin{bmatrix} 2 \\$

This a basis for the space spanned by the given vectors.											
			-3	[3	$\begin{bmatrix} 0 \end{bmatrix}$	[6	Γ	-6	
a.			2		0	2		-2		3	
	$\begin{bmatrix} 1\\0\\-2\\3 \end{bmatrix}, \begin{bmatrix} 0\\1\\2\\3 \end{bmatrix}, \begin{bmatrix} 2\\-2\\-8\\0 \end{bmatrix}, \begin{bmatrix} 2\\-1\\10\\3 \end{bmatrix}, \begin{bmatrix} 3\\-1\\-6\\9 \end{bmatrix}$	b.	6	,	-9	, –4	,	6 -2 -14 0 13	,	0	
			0		0	0		0		-1	
			7_		6	1_		13		0	

9. Find vectors that span the null space of the following matrices.

	Γ1	\mathbf{r}	1	07		1	3	-4	-3	1	
a.		ے 1	4	$\begin{bmatrix} 0\\ -2 \end{bmatrix}$	b.	0	1	-3	1	0	
	[0	I	3	-2]		0	0	4 3 0	0	0	