MTH 266, Homework #5, Fall 2018 Name _

Instructions: Write your work up neatly and attach to this page. Use exact values unless specifically asked to round. Show all work.

- 1. For each statement below determine if it is true or false. If the statement is false, briefly explain why it is false and give the true statement. Assume \mathscr{B} is a basis for the vector space V.
 - a. If \vec{x} is in V and if \mathscr{B} contains n vectors, then the B -coordinate vector of \vec{x} is in R^n .
 - b. The vector space \mathbb{P}_3 and \mathbb{R}^3 are isomorphic.
 - c. If \mathscr{B} is the standard basis for \mathbb{R}^n , then the \mathscr{B} -coordinate vector of an \vec{x} in \mathbb{R}^n is \vec{x} itself.
 - d. In some cases, a plane in R^3 can be isomorphic to R^2 .
 - e. The row space of A is the same as the column space of A^{T} .
 - f. The sum of the dimensions of the row space and the null space of A equals the number of rows of A.
 - g. The dimensions of the null space of A is the number of columns of A that are not pivot columns.
 - h. If A and B are row equivalent, then their row spaces are the same.
 - i. Dim Row A + dim Nul A = n
 - j. If the equation $\vec{Ax} = \vec{0}$ has only the trivial solution, then A is row equivalent to the *nxn* identity matrix.
 - k. If the columns of A are linearly independent then the columns of A span R^n .
 - I. If there is a \vec{b} in \mathbb{R}^n such that the equation $A\vec{x} = \vec{b}$ is consistent, then the solution is unique.
 - m. If P_B is the change-of-coordinates matrix, then $\begin{bmatrix} \vec{x} \end{bmatrix}_B = P_B \vec{x}$ for \vec{x} in V.
 - n. The columns of the change-of-coordinate matrix $\underset{C \leftarrow B}{P}$ are B-coordinate vectors of the vectors in C.
 - o. The columns of $\underset{C \leftarrow B}{P}$ are linearly independent.

- 2. Answer the following questions, and then explain why you know this to be the case. State a theorem or definition that applies.
 - a. If a 7x5 matrix A has rank 2, find dim Nul A, dim Row A, and rank A^{T} .
 - b. Suppose a 6x8 matrix A has 4 pivot columns. What is dim Nul A? Is Col A = R^4 ? Why or why not?
 - c. If the null space of an 8x7 matrix is 5-dimensional, what is the dimension of the Col space of A?
 - d. If A is a 5x4 matrix, what is the largest possible dimension of the row space of A?
 - e. If A is a 7x5 matrix, what is the smallest possible dimension of Nul A?
 - f. Suppose the solutions of a homogeneous system of 5 linear equations in 6 unknowns are all multiples of one nonzero solution. Will the system necessarily have a solution for every possible choice of constants on the right sides of the equations? Explain.
- 3. Find a basis for the subspace and state the dimension.

)

find a basis for Col A, Row A and Nul A. Find rank A and dim Nul A without calculations.

5. Given the bases B and C, and the given vector in one the bases, find the coordinate vector in the other basis.

a.
$$\mathscr{B} = \left\{ \begin{bmatrix} 1\\2\\4 \end{bmatrix}, \begin{bmatrix} 2\\1\\3 \end{bmatrix}, \begin{bmatrix} 2\\2\\1 \end{bmatrix} \right\}, \mathscr{E} = \left\{ \begin{bmatrix} 1\\-1\\2 \end{bmatrix}, \begin{bmatrix} 0\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 3\\4\\5 \end{bmatrix} \right\}, [\vec{x}]_{C} = \begin{bmatrix} -4\\10\\11 \end{bmatrix}_{C}$$

b. $\mathscr{B} = \left\{ \begin{bmatrix} 1\\-2\\2\\-1 \end{bmatrix}, \begin{bmatrix} 5\\1\\2\\1\\2 \end{bmatrix}, \begin{bmatrix} 2\\2\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\3\\1 \end{bmatrix} \right\}, \mathscr{E} = \left\{ \begin{bmatrix} 2\\2\\0\\3\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\-1\\1 \end{bmatrix}, \begin{bmatrix} 2\\0\\0\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\0\\4 \end{bmatrix} \right\}, [\vec{x}]_{B} = \begin{bmatrix} 5\\2\\-3\\10 \end{bmatrix}_{B}$

6. Find the standard matrix transformation of T for each of the following.

a.
$$T: \mathbb{R}^2 \to \mathbb{R}^4$$
 $T(\vec{e_1}) = (3,1,3,1), T(\vec{e_2}) = (-5,2,0,0)$ where $\vec{e_1} = (1,0), \vec{e_2} = (0,1)$.

- b. $T: \mathbb{R}^2 \to \mathbb{R}^2$ is a vertical shear transformation that maps $\vec{e_1}$ to $\vec{e_1} 3\vec{e_2}$, but leaves $\vec{e_2}$ unchanged.
- c. $T: \mathbb{R}^2 \to \mathbb{R}^2$ rotates points about origin through $-3\pi/2$ radians clockwise.
- d. $T: \mathbb{R}^2 \to \mathbb{R}^2$ first reflects points through the horizontal x₁-axis and then rotates points $-\pi/2$ radians.
- 7. Let $T: P^2 \to P^3$ be the transformation that maps a polynomial p(t) onto the polynomial (t+3)p(t). a. Find the image of $p(t) = 3 - 2t + t^2$.
 - b. Show that T is a linear transformation.
 - c. Find the matrix T relative to the basis $\{1, t, t^2\}$ and $\{1, t, t^2, t^3\}$.
- 8. For each of the linear transformations below, write the matrix of the linear transformation.

a.
$$T: \vec{x} \in R^3 \mapsto T(\vec{x}) \in R^3$$
, where T is given by $T\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{bmatrix} 2x_1 - 4x_2 \\ x_1 - x_3 \\ -x_2 + 3x_3 \end{bmatrix}$.
b. $T: \vec{x} \in R^2 \mapsto T(\vec{x}) \in R^3$, where T is given by $T\begin{pmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 3x_1 - 2x_2 \\ x_1 + 4x_2 \\ x_2 \end{bmatrix}$.

- c. Consider a polynomial in P_2 given by $p(t) = a_0 + a_1 t + a_2 t^2$. Define a linear operator T by $T(p(t)) = (2t^2 t + 6)p(t)$ in P_4 . Find the matrix of the transformation. [Hint: See Example 2.]
- d. Consider a polynomial in P_3 given by $p(t) = a_0 + a_1t + a_2t^2 + a_3t^3$. Find the matrix of the linear transformation taking this vector into P_2 defined by the derivative operator $\frac{d}{dt}[p(t)]$. [Hint: See Example 3.]
- e. Consider the function defined as $y(x) = a_1e^x + a_2e^{-x} + a_3e^{5x} + a_4e^{-7x}$. Write the matrix of the linear transformation defined by the derivative operator $\frac{d}{dx}[y(x)]$.
- f. Consider a function defined as $y(x) = a_1 e^{3x} \cos(2x) + a_2 e^{3x} \sin(2x)$. Write the matrix of the linear transformation defined by the derivative operator $\frac{d}{dx}[y(x)]$.

- g. Find linear transformation matrix that transforms a vector in R^2 by rotating it counterclockwise by 225°.
- h. Find a linear transformation matrix that transforms a vector in R^3 by rotating it through an angle $2\pi/3$ in the x_2x_3 -plane, then scales the x_1, x_2 directions by a factor of 4 and 2 respectively, and then reflects along the line $x_1 = x_3$.
- 9. For each of the B bases below, represent the vectors in the coordinate system of the C basis.

a.
$$\mathscr{B} = \left\{ \begin{bmatrix} 1\\3 \end{bmatrix}, \begin{bmatrix} -2\\0 \end{bmatrix} \right\}, \mathscr{E} = \left\{ \begin{bmatrix} 1\\1 \end{bmatrix}, \begin{bmatrix} 2\\-7 \end{bmatrix} \right\}$$

b. $\mathscr{B} = \left\{ \begin{bmatrix} 1\\2\\4 \end{bmatrix}, \begin{bmatrix} 2\\1\\3 \end{bmatrix}, \begin{bmatrix} 2\\2\\1\\1 \end{bmatrix} \right\}, \mathscr{E} = \left\{ \begin{bmatrix} 1\\-1\\2 \end{bmatrix}, \begin{bmatrix} 0\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 3\\4\\5 \end{bmatrix} \right\}$
c. $\mathscr{B} = \left\{ \begin{bmatrix} 1\\-2\\2\\2\\-1 \end{bmatrix}, \begin{bmatrix} 5\\1\\2\\1\\1 \end{bmatrix}, \begin{bmatrix} 2\\2\\1\\0\\1\\0 \end{bmatrix}, \begin{bmatrix} 2\\2\\1\\0\\3\\1 \end{bmatrix} \right\}, \mathscr{E} = \left\{ \begin{bmatrix} 2\\2\\0\\3\\3\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\1\\-1\\1\\1 \end{bmatrix}, \begin{bmatrix} 2\\0\\1\\0\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\0\\4 \end{bmatrix} \right\}$