
INQUIRY ORIENTED

DIFFERENTIAL EQUATIONS

Chris Rasmussen San Diego State University

Karen Allen Keene North Carolina State University

Justin Dunmyre Frostburg State University

Nicholas Fortune Western Kentucky UniversityT
h
e
I
O
D
E

T
e
a
m

The IODE Team https://iode.wordpress.ncsu.edu

https://iode.wordpress.ncsu.edu


Unit 1: Qualitative and Graphical Approaches

Bees and Flowers

Often scientists use rate of change equations in their study of population growth for one or more species.
In this problem we study systems of rate of change equations designed to inform us about the future
populations for two species that are either competitive (that is, both species are harmed by interaction)
or cooperative (that is, both species benefit from interaction).

1. Which system of rate of change equations below describes a situation where the two species compete
and which system describes cooperative species? Explain your reasoning.

(i)
dx

dt
= �5x+ 2xy

dy

dt
= �4y + 3xy

(ii)
dx

dt
= 4x� 2xy

dy

dt
= 2y � xy

Page 1.1



Unit 1: Qualitative and Graphical Approaches

A Simplified Situation

The previous problem dealt with a complex situation with two interacting species. To develop the ideas
and tools that we will need to further analyze complex situations like these, we will simplify the situation
by making the following assumptions:

• There is only one species (e.g., fish)

• The species has been in its habitat (e.g., a lake) for some time prior to what we call t = 0

• The species has access to unlimited resources (e.g., food, space, water)

• The species reproduces continuously

2. Given these assumptions for a certain lake containing fish, sketch three possible population versus
time graphs: one starting at P = 10, one starting at P = 20, and the third starting at P = 30.

(a) For your graph starting with P = 10, how does the slope vary as time increases? Explain.

(b) For a set P value, say P = 30, how do the slopes vary across the three graphs you drew?

3. This situation can also be modeled with a rate of change equation, dP
dt = something. What should

the “something” be? Should the rate of change be stated in terms of just P , just t, or both P and
t? Make a conjecture about the right hand side of the rate of change equation and provide reasons
for your conjecture.

Page 1.2



Unit 1: Qualitative and Graphical Approaches

What Exactly is a Di↵erential Equation and What are Solutions?

A di↵erential equation is an equation that relates an unknown function to its derivative(s). Suppose
y = y(t) is some unknown function, then a di↵erential equation, or rate of change equation, would express
the rate of change, dy

dt , in terms of y and/or t. For example, all of the following are di↵erential equations.

dP

dt
= kP,

dy

dt
= y + 2t,

dy

dt
= t2 + 5,

dy

dt
=

6y � 2

ty
,

dy

dt
=

y2 � 1

t2 + 2t

In particular, these are all examples of first order di↵erential equations because only the first derivative
appears in the equation. Given a rate of change equation for some unknown function, solutions to this
rate of change equation are functions that satisfies the rate change equation. A constant function that
satisfies the di↵erential equation is called an equilibrium solution.

One way to read the di↵erential equation dy
dt = y + 2t aloud you would say, “dee y dee t equals y plus

two times t.” However, this does not relate to the meaning of the solution. How might you read this
di↵erential equation with meaning?

4. (a) Is the function y = 1 + t a solution to the di↵erential equation
dy

dt
=

y2 � 1

t2 + 2t
? How about the

function y = 1 + 2t? How about y = 1? Explain your reasoning.

(b) Is the function y = t3 + 2t a solution to the di↵erential equation
dy

dt
= 3y2 + 2? Why or why

not?

5. Figure out all the functions that satisfy the rate of change equation
dP

dt
= 0.3P .

(Hint: read the di↵erential equation with meaning.)

6. Figure out all of the solutions to the di↵erential equation
dy

dt
= t2 + 5.
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Unit 1: Qualitative and Graphical Approaches

Slope Fields

A slope field is a graphical representation of a rate of change equation. Given a rate of change equation,

if we plug in particular values of (t, y) then
dy

dt
tells you the slope of the tangent vector to the solution at

that point.

For example, consider the rate of change equation
dy

dt
= y + 2t. At the point (1, 3), the value of

dy

dt
is

5. Thus, the slope field for this equation would show a vector at the point (1, 3) with slope 5. A slope
field depicts the exact slope of many such vectors, where we take each vector to be uniform length. Slope
fields are useful because they provide a graphical approach for obtaining qualitatively correct graphs of
the functions that satisfy a di↵erential equation.

7. Below is a partially completed slope field for
dP

dt
= 0.8P .

(a) Plot many more tangent vectors to create a slope field.

(b) Use your slope field to sketch in qualitatively correct graphs of the solution functions that start
at P = 0, 0.5, and 2, respectively. Note: the value of P at an initial time (typically t = 0) is
called an initial condition.

(c) Recall that a solution to a di↵erential equation is a function that satisfies the di↵erential equa-
tion. Explain how the graph with initial condition P (0) = 1 can graphically be thought of as
a solution to the di↵erential equation when the di↵erential equation is represented by its slope
field.
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Unit 1: Qualitative and Graphical Approaches

8. Below are seven rate of changes equations and three di↵erent slope fields. Without using technology,
identify which di↵erential equation is the best match for each slope field (thus you will have four rate
of change equations left over). Explain your reasoning.

(i)
dy

dt
= t� 1 (ii)

dy

dt
= 1� y2 (iii)

dy

dt
= y2 � t2 (iv)

dy

dt
= 1� y

(v)
dy

dt
= t2 � y2 (vi)

dy

dt
= 1� t (vii)

dy

dt
= 9t2 � y2

(a) (b)

(c)

9. For each of the slope fields in the previous problem, sketch in graphs of several di↵erent qualitatively
correct solutions.
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Unit 1: Qualitative and Graphical Approaches

Homework Set 1

1. Consider the following systems of rate of change equations:

System A System B
dx

dt
= 3x

⇣
1� x

10

⌘
� 20xy

dy

dt
= �5y +

xy

20

dx

dt
= 0.3x� xy

100
dy

dt
= 15y

⇣
1� y

17

⌘
+ 25xy

In both of these systems, x and y refer to the number of two di↵erent species at time t. In partic-
ular, in one of these systems the prey are large animals and the predators are small animals, such
as piranhas and humans. Thus it takes many predators to eat one prey, but each prey eaten is a
tremendous benefit for the predator population. The other system has very large predators and very
small prey.

Figure out which system is which and explain the reasoning behind your decision.

2. Consider the rate of change equation

dy

dt
= 0.5y(2 + y)(y � 8),

which has been created to provide predictions about the future population of rabbits over time.

(a) For what values of y is y(t) increasing? Explain your reasoning.

(b) For what values of y is y(t) decreasing? Explain your reasoning.

(c) For what values of y is
dy

dt
neither positive nor negative? What does this imply about the

solution function y(t)?

3. Valeria created the following graph to help her analyze solutions to the di↵erential equation
dy

dt
=

2y
⇣
1� y

10

⌘
. What is this a graph of (i.e., what are the axes for this graph)? What information

about solutions can you glean from this graph?
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Unit 1: Qualitative and Graphical Approaches

4. Suppose two students are memorizing the elements on a list according to the rate of change equation

dL

dt
= 0.5(1� L),

where L represents the fraction of the list that is memorized at any time t.

(a) If one of the students knows one-third of the list at time t = 0 and the other student knows
none of the list, which student is learning most rapidly at this instant? Why?

(b) What does the rate of change equation predict for someone who begins with the list completely
memorized? Explain.

(c) Suppose now that the list is infinitely long, like the decimal representation for ⇡. In reality no
one can memorize all the digits to ⇡, but what does the rate of change equation predict will
happen for a person who starts out not knowing any of the digits? That is, according to the
rate of change equation, if L = 0 at time t = 0, is there ever a value of t for which L = 1?
Explain.

5. The letter y appears in two places in the di↵erential equation
dy

dt
= 0.3y. Is it appropriate to think

of both occurrences of y as function of t? Explain.

6. In algebra, the goal of solving an equation such as x2 + 4x = 2 is to find the values of x that make a

true statement. In di↵erential equations, what is the goal of solving an equation such as
dx

dt
+4x = 2?

7. For the di↵erential equation
dy

dt
= 1� y2,

(a) Sketch a slope field by hand.

(b) Describe any shortcuts or patterns you used to make the task easier.

(c) Sketch several y(t) graphs.

8. Di↵erential equations are often referred to as mathematical models. Explain what the phrase “math-
ematical model” means to you, what previous experiences you have had with mathematical models,
and how the mathematical use of the word model is similar to and/or di↵erent from the everyday
use of the word model (e.g., fashion model, model airplane, model student).

Page 1.7



Unit 2: A Numerical Approach

A Rate of Change Equation for Limited Resources

In a previous problem we saw that the rate of change equation
dP

dt
= 0.3P can be used to model a situation

where there is one species, continuous reproduction, and unlimited resources. In most situations, however,
the resources are not unlimited, so to improve the model one has to modify the rate of change equation
dP

dt
= 0.3P to account for the fact that resources are limited.

1. (a) In what ways does the modified rate of change equation

dP

dt
= 0.3P

✓
1� P

10

◆

account for limited resources? (Think of 10 as scaled to mean 10,000 or 100,000)

(b) How do you interpret the solution with initial condition P (0) = 10?

(c) Open the Slope Field Viewer, https://ggbm.at/ZGeeGQbp, and plot the slope field for

dP

dt
= 0.3P

✓
1� P

10

◆
.

(Note: In the Slope Field Viewer you will need to use the variable y instead of P , and you may
want to change the viewing window using the button on the right of the applet.) In what ways
are your responses to parts 1a and 1b visible in the slope field?

(d) In this problem, negative P values do not make sense, but we can still mathematically make
sense of the slope field for negative P values. Explain why the slope field looks the way it does
below the t-axis.

2. If there are initially P (0) = 2 fish in the lake, approximately how many fish are in the lake at time
t = 2? How did you arrive at your approximation? (Hint: Initially dP

dt = 0.48, but what meaning
does 0.48 have?)

Page 2.1

https://ggbm.at/ZGeeGQbp


Unit 2: A Numerical Approach

Using a Slope Field to Predict Future Fish Populations

Below is a slope field for the rate of change equation
dP

dt
= 0.3P

✓
1� P

10

◆
.

3. (a) On the slope field above, stitch together in a tip to tail manner several tangent vectors to
produce a graph of the population versus time if at time t = 0 we know there are 8 fish in the
lake (again, think of 8 as scaled for say, 8000 or 80,000).

(b) Reproduce your technique as much as possible using the Slope Field Stitcher applet,
https://ggbm.at/FZn4WHeU. You can use the arrow buttons to move the initial vector around,
and then create subsequent vectors to stitch on using the appropriate button.

4. Explain how you are thinking about rate of change in your method. For example, is the rate of
change constant over some increment? If yes, over what increment? If no, is the rate of change
always changing?
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Unit 2: A Numerical Approach

5. Using the di↵erential equation
dP

dt
= P

✓
1� P

20

◆
and initial condition P (0) = 10, José and Julie

started the following table to numerically keep track of their tip-to-tail method for connecting tangent
vectors. Explain José’s and Julie’s approach and complete their table. Round to two decimal
places.

t P dP
dt

0 10 5

0.5 12.5

1.0

1.5

6. Using the same di↵erential equation and initial condition as José and Julie, Derrick and Delores
started their table as shown below. Explain how Derrick and Delores’ approach is di↵erent from José
and Julie’s and then complete their table. Round to two decimal places.

dP

dt
= P

✓
1� P

20

◆

t P dP
dt

0 10 5

.25 11.25

.5

.75

7. Which approach do you think is more accurate and why?
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Unit 2: A Numerical Approach

8. (a) Consider the di↵erential equation
dy

dt
= y+t and initial condition y(0) = 4. Use José and Julie’s

approach to find y(1.5). Show your work graphically and in a table of values.

(b) Is your value for y(1.5) the exact value or an approximate value? Explain.

9. Generalizing your tip-to-tail approach. Create an equation-based procedure/algorithm that

would allow you to predict future y-values for any di↵erential equation
dy

dt
, any given initial condition,

and any time increment.
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Unit 2: A Numerical Approach

Homework Set 2

1. A slope field for the di↵erential equation
dy

dt
= 0.5(y + t) is shown below.

(a) For the initial condition of y(0) = 1, sketch on the above slope field what you think two iterations
of the “tip-to-tail” method with a step size of 1 unit should look like. Do this without doing
any computations.

(b) Again, without doing any computations, sketch on the same slope field what you think three
iterations with a step size of 0.5 units should look like for the same initial condition (perhaps
using a di↵erent color).

(c) Use the tip-to-tail (i.e., Euler’s) method to numerically compute approximations for parts 1a
and 1b and then compare your graphical predictions to the numerical results.
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Unit 2: A Numerical Approach

2. Consider a di↵erential equation with the given slope field and the initial value y(0) = 1.

(a) Explain why, if you wanted to approximate y(2) using two steps of Euler’s method, you would
need �t = 1.

(b) Use a straight edge to graph two steps of Euler’s method to approximate y(2).

(c) This time, instead of using two steps of Euler’s method, sketch on the same slope field what it
would look like if you used four steps of Euler’s method to approximate y(2).

(d) Besides the obvious di↵erence that the step size is di↵erent, state two other things that are
di↵erent between your answers to parts 2b and 2c.

(e) Besides the obvious fact that they both use Euler’s method, what is similar about the first step
to your answers to parts 2b and 2c?
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Unit 2: A Numerical Approach

3. Suppose we have a rate of change equation and initial condition for the population of raccoons in
Lake County. Below is a graph of an exact solution.

Merry, Pippin, and Sam attempted to use the “tip-to-tail” Euler method to predict what the pop-
ulation of raccoons would be at time t = 2, with time increments one unit. However, they arrived
at di↵erent graphs for their predictions. Their predictions are given below, and are shown with the
exact solution.

For each prediction, give reasons as to whether or not each person illustrated the correct relationship
between Euler’s method and the exact solution.

4. Suppose the function y(t) = 6t + 1 is a solution to a particular di↵erential equation. For the initial
condition y(0) = 1, is a graph of the tip-to-tail Euler method exactly the same as the graph of the
exact solution? Does your response depend on step size? Explain.

5. Compute by hand four steps of the tip-to-tail Euler method for the di↵erential equation
dy

dt
= y � t

with initial condition y(0) = 2 and step size 0.5.
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Unit 2: A Numerical Approach

6. Euler’s Method Using a Spreadsheet. Learning to use a spread sheet for various applications in
engineering and mathematics is a valuable skill. Your task in this problem is to use Excel to generate
as many steps of the Euler method that you want. If you are already familiar with Excel, skip the
example below and go directly to part a.

EXAMPLE: Here are step by step instructions for how to use Excel to generate 15 steps of the
algorithm Ynext = 2 · Ynow + 1 with initial condition Y = 3.

• Open an Excel workbook

• Select cell A1 by clicking on the cell in this location and type in Ynow as a column heading

• Select cell B1 and create a column heading called Ynext

• Select cell A2 and type in the number 3 (this is the given initial Y-value)

• Select cell B2 and type =2*A2+1 (after pressing Enter the number 7 will appear in this cell)

• Select cell A3 and type =B2

• Select and copy cell B2 (An animated dashed-line will appear around the cell)

• Select cells B3 through B15 and paste

• Select and copy cell A3

• Select cells A4 through A15 and paste

• Do a few hand computations to verify the results

(a) Using a step size �t of your choice, figure out how to use Excel to generate at least 20 steps for

Euler’s method, ynext = ynow + (
dy

dt
)now ·�t, for the di↵erential equation

dy

dt
= 0.3y(1 � y

12.5
)

with initial condition y(0) = 3. In order to make it easier to graph the results, make your first
column tnow and your second column ynow. Turn in a print out your results and verify the first
three steps by hand.

(b) Use the Chart Wizard scatter plot option to create a graph of your (t, y) data from part 6a. An
easy way to do this is to first highlight all the data in the tnow and ynow columns, select Chart
Wizard, and follow the prompts. Turn in a print out of your results.

7. Two students are having a discussion about the equal sign in the rate of change equation
dP

dt
=

0.5P

✓
1� P

100

◆
. One student says he thinks about the equal sign as instructions for calculating.

The other student says he thinks about the equal sign as a kind of mirror. How do you think about
the equal sign in a rate of change equation?
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Unit 2: A Numerical Approach

8. A group of scientists created the di↵erential equation
dP

dt
= 0.8P

✓
1� P

5

◆
to predict future fish

populations in Lake Minnetonka, where P represents thousands of fish and t is in years.

(a) If you were to plot a slope field for this rate of change equation, what window for the P and t
values would you use to make sure the most important features are clearly shown? Explain.

(b) What does this rate of change equation predict about the long-term outcome of the fish pop-
ulation if the initial population is 2 (i.e., P = 2 at t = 0)? How about if P = 6 at t = 0?

(c) Why are the predictions you made in part 8b reasonable (or not) for a fish population? Explain.

(d) Carry out by hand three steps of Euler’s method with a step size of 0.5 for the initial condition
P (0) = 5.
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Unit 3: An Analytic Approach

Comparing Predictions

Jerry and Tom are using the di↵erential equation
dP

dt
= 0.2P to make predictions about the number of a

particular species of fish in Lake Michigan. They know that the initial population P is 2 at time t = 0 (as

before, think of 2 as scaled for say, 2,000 or 20,000).

Although Jerry and Tom have the same goal (to obtain predictions for future fish population), they have

di↵erent approaches to achieve this goal.

• Tom’s approach is to create a graph of the number of fish versus time by connecting slope vectors

tip-to-tail, where the rate of change is constant over some time interval, for example �t = 0.5.

• Jerry’s approach is to create a graph of the number of fish versus time by using a continuously

changing rate of change.

1. Sketch Tom and Jerry’s approaches below. Will these two approaches result in the same predictions

for the number of fish in, say, 2.5 years? If yes, why? If not, how and why will the graphs of their

approaches be di↵erent?
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Unit 3: An Analytic Approach

Separation of Variables

2. Finding the exact solution. Jerry’s approach involves using a continuously changing rate of

change, which corresponds to finding an “exact solution.”

(a) Why do you think the phrase “exact solution” is used to describe the result of Jerry’s approach?

Explain why it is appropriate to describe the result of Tom’s approach as an “approximate

solution”.

(b) Use the chain rule to write down, symbolically, the derivative with respect to t of ln(P ), where

P is shorthand for P (t).
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Unit 3: An Analytic Approach

Next you will learn a technique for finding the exact solution corresponding to Jerry’s approach. We

begin by considering the chain rule.

(c) The following is a method to find the analytic solution to
dP

dt
= 0.2P . For now assume that

P > 0. This assumption corresponds to the population growth context and it will make the

algebra easier and hence the underlying idea clearer.

Divide both sides of
dP
dt = 0.2P by P

Replace
1
P

dP
dt with [ln(P )]

0

Write integrals with respect to

t on both sides

Apply the Fundamental The-

orem of Calculus to integrate

both sides

Solve for P (and remember

that P is actually a function,

P (t))

Show that P can be written as

P (t) = ke0.2t

The end result, P (t) = ke0.2t is called the general solution because it represents all possible

functions that satisfy the di↵erential equation. We can use the general solution to find any particular
solution, which is a solution that corresponds to a given initial condition.

3. Use the same technique to find the general solution to
dy

dt
=

t

3y2
. The first step is done for you.

3y2
dy

dt
= t
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Unit 3: An Analytic Approach

4. In practice, we often circumvent explicit use of the chain rule and instead use a shortcut to more

e�ciently find the general solution. The shortcut involves treating the derivative
dP
dt as a ratio and

“separating” the dP and dt. In the table below, follow the instructions to see how the shortcut works,

using again the equation
dP

dt
= 0.2P . (See http://kevinboone.net/separation variables.html) for a

nice explanation of the shortcut).

‘Separate’ the dP from the dt so that

dP and P are on the same side. (If

there are t’s in the equation they must

go on the same side as dt.)

Integrate both sides of the equation

(one side with respect to P , the other

with respect to t)

Continue as before to arrive at a solu-

tion of the form P (t) =

5. Use the shortcut to find the general solution to
dy

dt
=

t

3y2
.
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Unit 3: An Analytic Approach

6. A di↵erential equation together with an initial condition is called an Initial Value Problem (IVP).

To solve an IVP one first must find the general solution and then use the initial condition to find the

particular solution corresponding to the initial condition.

Solve the following IVP:

dy

dt
=

t

y
y(2) = �1

(a) For what values of t is your solution valid? Why?

(b) Check to see that your particular solution “fits” the di↵erential equation by substituting the

solution and its derivative into the original di↵erential equation.

(c) Use the GeoGebra applet, https://ggbm.at/SbHk2n4H, to check to see that your specific solution

“fits” the di↵erential equation by plotting the slope field and then plotting the graph of the

solution on top of the slope field. Explain how this relates to Jerry’s approach.

(d) Even though
dy

dt
is undefined when y = 0, the solution function can be defined such that

y(2) = 0. What should the graph of this solution look like in the slope field?
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Unit 3: An Analytic Approach

Making Connections

7. For the first slope field for
dL
dt = 0.5(1� L) on the following page,

(a) Using Jerry’s approach, sketch as accurately as possible a graph of the solution with initial

condition L(0) = 1/3.

(b) Make a copy of this sketch on a transparency.

(c) If you wanted to obtain the graph of the solution with initial condition L(0) = 1/2, how, if
at all, might you move the copy of your graph with initial value 1/3 so that it is now a graph

of the solution with initial value 1/2? What feature of the di↵erential equation justifies your

approach?

(d) Find the general solution for
dL

dt
= 0.5(1�L) and explain how your results from part 7c can be

understood from the general solution.

8. For the second slope field for
dh
dt = �t+ 1 on the following page,

(a) Using Jerry’s approach, sketch as accurately as possible a graph of the solution with initial

condition h(0) = 1/2.

(b) Make a copy of this sketch on a transparency.

(c) If you wanted to obtain the graph of the solution with initial condition h(0) = 1, how, if at all,

might you move the copy of your graph with initial value 1/2 so that it is now a graph of the

solution with initial value 1? Explain your idea and provide reasons for why your idea makes

sense.

(d) Find the general solution for
dh
dt = �t + 1 and explain how your results from part 8c can be

understood from the general solution.

9. Give an example of a di↵erential equation where neither of your ideas from 7c and 8c will work and

provide reasons for your response.
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Unit 3: An Analytic Approach

Slope Field for
dL

dt
= 0.5(1� L)

Slope Field for
dh

dt
= �t+ 1
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Unit 3: An Analytic Approach

Homework Set 3

1. When you solve an equation such as x2� 3 = 1 , you get two numbers x = 2 and x = �2. When you

solve a di↵erential equation, what do you get?

2. Find the general solution to the following di↵erential equations.

(a)
dy

dt
= t4y

(b)
dy

dt
= 2y + 1

(c)
dy

dt
= t 3

p
y

(d)
dy

dt
=

t

y + 1

(e) 2
dy

dx
= xy(x+ 1)

3. Find the particular solution to the following initial value problems.

(a)
dy

dt
=

�t

y
, y(0) = 4

(b)
dy

dt
= � 3

p
y, y(0) = 27

(c)
dy

dx
=

x(y � 2)

x2 + 4
, y(1) = 5

4. Develop a di↵erential equation where y(t) = 6 is a solution function but y(t) = 8 is not a solution

function. Explain why your di↵erential equation meets both of these criteria.

5. Denise has created the following graph to go along with the rate of change equation
dP
dt = 0.2P .

What is this a graph of? Label the axes and explain your reasoning.
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Unit 3: An Analytic Approach

6. Cornelia is working with the di↵erential equation
dy

dt
= y � t. She has no method like separation of

variables to use but still needs to a way to figure out which, if any, of the following functions are

solutions to
dy

dt
= y � t.

(i) y(t) = t+ 2 (ii) y(t) = et � 1 (iii) y(t) = et + t+ 1 (iv) y(t) = t

(a) Read the di↵erential equation
dy

dt
= y � t with meaning. Write down exactly how you would

read the equation with meaning. Recall reading with meaning was discussed in Unit 1.

(b) Explain how Cornelia can use a slope field to determine which, if any, of these functions are

solutions to the di↵erential equation,
dy

dt
= y � t.

(c) Use what it means to be a solution to a di↵erential equation to determine which, if any, of these

functions are solutions to
dy

dt
= y � t. Show all work.
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A Salty Tank

1. A very large tank initially contains 15 gallons of saltwater containing 6 pounds of salt. Saltwater
containing 1 pound of salt per gallon is pumped into the top of the tank at a rate of 2 gallons per
minute, while a well-mixed solution leaves the bottom of the tank at a rate of 1 gallon per minute.

(a) Should the rate of change equation for this situation depend just on the amount of salt S in the
tank, the time t, or both S and t? Explain your reasoning.

(b) The following is a general rule of thumb for setting up rate of change equations for situations
like this where there is an input and an output:

rate of change = rate of change in � rate of change out

Using the above rule of thumb, figure out a rate of change equation for this situation.
Hint: Think about what the units of dS

dt need to be, where S is the amount of salt in the tank
in pounds.
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(c) Use the slope field for this di↵erential equation in the GeoGebra applet,
https://ggbm.at/PFRcbkbZ, to sketch a graph of the solution with initial condition S(0) = 6.
Reproduce this sketch below. Estimate the amount of salt in the tank after 15 minutes.
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Unit 4: Linear Di↵erential Equations

The di↵erential equation you developed for the salty tank is not separable, and therefore using the technique
of separation of variables is not appropriate. This di↵erential equation is called first order linear, which
means it has the form

dy

dt
+ g(t) · y = r(t),

where g(t) and r(t) are both continuous functions.

The following technique, which we refer to as the reverse product rule, can be used find the general
solution to a first-order linear equation.

2. Review the product rule as you remember it from calculus. In general symbolic terms, how do you
represent the product rule? How would you describe it in words?

Consider the di↵erential equation
dy

dt
+ 2y = 3. Note that this is a first order linear di↵erential

equation, where g(t) and r(t) are both continuous functions. The following illustrates a technique for
finding the general solution to linear di↵erential equations. The inspiration for the technique comes
from a creative use of the product rule and the Fundamental Theorem of Calculus, as well as use of
the previous technique of separation of variables.

Use the product rule to expand (yu)0. Box 0

In the equation dy
dt + 2y = 3, rewrite

dy
dt as y0.

Box 1

Notice that the left-hand side of the
equation in Box 1 looks a lot like the
expanded product rule but is missing
the function u. So multiply both sides
by u, a function that we will determine
shortly.

Box 2

Because, so far, u is an arbitrary func-
tion, we can have u satisfy any di↵er-
ential equation that we want.

Box 3

Use u0 = 2u to rewrite the left-hand
side of Box 2 to look like Box 0.
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Use separation of variables to solve
u0 = 2u.

Box 4

Replace u in the equation from Box 2
with your solution from Box 4.

Box 5

Show that the equation in Box 5 can
be rewritten as

�
ye2t

�0
= 3e2t

Box 6

Hint: Consider Box 0.

Write integrals with respect to t on
both sides. Apply the Fundamental
Theorem of Calculus.

Box 7

Obtain an explicit solution by isolat-
ing y(t).

Box 8

3. Use the previous technique, which we refer to as the reverse product rule, to find the general
solution for the Salty Tank di↵erential equation from Problem 1.
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4. (a) Use the general solution from problem 3 to find the particular solution corresponding to the
initial condition S(0) = 6 and then use the particular solution to determine the amount of salt
in the tank after 15 minutes. That is, compute S(15). Your answer should be close to your
estimate from problem 1c. Is it? If not, you likely made an algebraic error.

(b) What does your solution predict about the amount of salt in the tank in the long run? How
about the concentration?

(c) Explain how you can make sense of the predictions from 4b by using the di↵erential equation
itself.

Page 4.5



Unit 4: Linear Di↵erential Equations

Homework Set 4

1. Find the general solutions to the following di↵erential equations using separation of variables or the
reverse product rule. Give a reason as to why you used the method you chose over the other.

(a)
dy

dt
= 2y � t

(b)
dy

dt
= �y

t
+ 2

(c)
dy

dt
= y sin t

(d)
dy

dt
= cos t

2. Solve the following di↵erential equation in two ways: once using separation of variables, and once
using the reverse product rule.

dy

dt
= 2y + 1 ; y(0) = 2

3. For each of the following, determine which method(s) could be used to find the general solution. Do
NOT actually find the general solutions, just determine any and all techniques that could be used.

(a)
dy

dt
= 2y � 3e�t

(b)
dy

dt
= �0.2(75� y)

(c)
dy

dt
= y2 + 1

(d)
dy

dt
= ety � cos t

4. (a) Create a di↵erential equation (di↵erent from all those above) that can only be solved with
separation of variables.

(b) Create a di↵erential equation (di↵erent from all those above) that can only be solved with the
reverse product rule method.

(c) Create a di↵erential equation (di↵erent from all those above) that can be solved with either the
reverse product rule method or separation of variables.

5. A tank initially contains 90 lb of salt dissolved in 20 gal of water. Brine containing 2 lb/gal of salt
flows into the tank at the rate of 3 gal/min, and the mixture flows out of the tank at the same rate.
How much salt does the tank contain 6 minutes later?
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6. (a) Use our technique for solving linear di↵erential equations to verify that the exact solution to
dy

dt
= 2y � 3e�t with initial condition y(0) = 1 is y(t) = e�t.

(b) Compare the long-term behavior of the exact solution and one or more tip to tail Euler’s method
approximations. Describe and graphically illustrate your results and develop an argument that
explains or accounts for these results.

(c) The Euler algorithm starts at some value, computes the rate of change at that value, and then
assumes that this rate of change is going to be constant over a specified time interval. This
process gets you to the next value and the entire process is repeated. In other words, for each
time interval this recipe uses the rate of change at the beginning of each interval. One idea
to improve this process is instead of using the value of the rate of change at the beginning of
each time interval, calculate some sort of average of the rate of change values over the time
interval and then use that averaged rate of change just as you would in the Euler recipe. Go to
the library and look up in one or more di↵erential textbooks the approximation method called
Runge-Kutta. Write down what the algorithm for this method and briefly discuss why this
method is better than the Euler method.

(d) Use EXCEL to compare a Runge-Kutta approximation, an Euler’s method approximation, and

a graph of the exact solution for the di↵erential equation
dy

dt
= 2y � 3e�t with initial condition

y(0) = 1. Summarize your comparison below and discuss how (and why) the approximations
di↵er from the graph of the exact solution.

7. Thus far in the course, we have approached analysis of rate of change equations in three di↵erent ways
– analytical approaches, numerical approaches, and graphical approaches. In words understandable
to a calculus student planning to take di↵erential equations, describe what it means to analytically,
numerically, and graphically analyze solutions to a di↵erential equation. Also, develop an explanation
that would help this student understand when you might want to use one approach over the other
and what advantages and disadvantages each accompanies each approach.

8. Some textbooks refer to the “reverse product rule” technique as the method of “integrating factors.”
Do some research using the internet or textbooks and explain how the integrating factor method
relates to the reverse product rule.

9. Let’s call the salty tank we discussed in class Tank A. Consider the following modifications:

• Tank B is the same basic scenario as Tank A, but pure water is being pumped into Tank B
instead of saltwater.

• Tank C is the same basic scenario as Tank A, but the rates are switched: saltwater enters Tank
C at a rate of 1 gallon per minute, and leaves at a rate of 2 gallons per minute.

• Tank D is the same basic scenario as Tank A, but Tank D initially contains 6 gallons of pure
water.

(a) Set up and solve initial value problems that correspond to individual Tanks B, C, and D.

(b) Use a plot to compare four solution curves and discuss how these curves predict/represent
outcomes you might expect from the description of each scenario.

10. In this course so far we have discussed various analytic, numerical, and graphical methods and
techniques for finding and understanding solutions to di↵erential equations. Below are the methods
discussed in this course, up to this point, in the left column. Match the technique to its appropriate
category(ies), in the right column.
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Technique Category

Euler’s Method Analytic Technique

Reverse Product Rule Numerical Technique

Slope Field Graphical Technique

Separation of Variables
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Unit 5: Uniqueness of Solutions

Proposed Paths of Descent

A group of scientists at the Federal Aviation Association has come up with the following two di↵erent rate
of change equations to predict the height of a helicopter as it nears the ground:

dh

dt
= �h and

dh

dt
= �h

1
3

For both rate of change equations h is in feet and t is in minutes. The scientists, of course, want their
models to predict that a helicopter actually lands - but do either or both of the proposed models predict
this?

1. Getting familiar with the di↵erential equations:

(a) Just by examining the rate of change equations, what can you say about the height of the

helicopter as predicted by
dh

dt
= �h and by

dh

dt
= �h

1
3 ? More specifically, as h approaches zero,

what can you say about
dh

dt
and what does that imply about whether the model predicts that

the helicopter lands?

(b) Sketch your best guess for a height versus time solution graph for each rate of change equation.

2. (a) What do each of the proposed rate of change equations say about the solution to the di↵erential
equation if the helicopter is already on the ground? Explain and sketch a corresponding graph
of height versus time on the same set of axes from part 1b.

(b) Interpret the initial condition h(0) = 0, and explain why h(t) = 0 should be a solution to each
di↵erential equation under this initial condition.
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3. Use the Geogebra applet, https://ggbm.at/dJsACfAN, to investigate the slope fields. What do the
slope fields suggest about whether the model predicts if the helicopters will land? How do the slope
fields compare with your sketches from part 1b?

4. Solve the following initial value problems:

(a)
dh

dt
= �h

(i) h(0) = 2 (ii) h(0) = 0 (Hint : Use problem 2b)

(b)
dh

dt
= �h

1
3

(i) h(0) = 2 (ii) h(0) = 0 (Hint : Use problem 2b)

5. (a) For each di↵erential equation, interpret the results from problem 4 in terms of whether the
model predicts the helicopter will ever touch the ground. If so, at what time?

(b) For each di↵erential equation, interpret the results from problem 4 in terms of whether graphs
of (i) and (ii) will ever touch or cross.
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6. One di↵erence between the two di↵erential equations is the partial derivative of the right hand side
at h = 0. That is,

@f

@h
, where f(h) = �h

for one di↵erential equation is di↵erent than

@f

@h
, where f(h) = �h

1
3

for the other di↵erential equation.

Accurately draw graphs of
dh

dt
versus h for both di↵erential equations and use these graphs to

determine the partial derivatives at h = 0 for each di↵erential equation.
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The Uniqueness Theorem

In the formal language of di↵erential equations, the term “unique” or “uniqueness” refers to whether or not
two solution functions ever touch or cross each other. Using this terminology, the two solutions you found

to
dh

dt
= �h are unique while the two solutions you found to

dh

dt
= �h

1
3 are not unique. Fortunately, one

does not have to always analytically solve a di↵erential equation to determine if solutions will or will not
be unique. There is a theorem, the Uniqueness Theorem, which sets out conditions for when solutions
are unique.

Theorem. Let f(x, y) be a real valued function which is continuous on the rectangle

R = {(x, y) : |x� x0|  a, |y � y0|  b}.

Assume f has a partial derivative with respect to y and that this partial derivative @f/@y is also continuous
on the rectangle R. Then there exists an interval

I = [x0 � h, x0 + h] (with h  a)

such that the initial value problem

dy

dx
= f(x, y), y(x0) = y0

has a unique solution y(x) defined on the interval I.

7. Explain how the conditions of this theorem relate to solutions of
dh

dt
= �h.

8. If you are given a di↵erential equation and determine that the conditions of the uniqueness theorem
are NOT met in a specific range of y-values, what can you conclude about the graphs of solution
functions within that range of y-values? Explain.
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Homework Set 5

1. Suppose two planes start descending at the same time, one is directly above the other and both

follow the same di↵erential equation,
dh

dt
= �h1/3. Is there any possibility of a midair collision?

Will the initially higher one ever get below the initially lower one? Develop two di↵erent arguments
to support your conclusion, one based on the uniqueness theorem and one based on the fact this
di↵erential equation is autonomous and hence graphs of solutions are related to each in a particular
way.

2. In light of the Uniqueness Theorem, consider the population model

dP

dt
= 0.3P

✓
1� P

12.5

◆
.

If P (0) < 12.5, will the population ever reach 12.5? Explain.

3. For each di↵erential equation, determine (with reasons) whether or not graphs of solution functions
will ever touch any and all equilibrium solution functions (consider both positive and negative values
of t).

(a)
dL

dt
= .5(1� L) (b)

dy

dt
= 0.3y

⇣
1� y

10

⌘
(c)

dy

dt
= �t+ 1 (d)

dy

dt
= y

1
2

4. Suppose two students are memorizing a list according to the same model
dL

dt
= 0.5(1 � L) where

L represents the fraction of the list that is memorized at any time t. According to the uniqueness
theorem, will the student who starts out knowing none of the list ever catch up to the student who
knows one-third of the list? Explain.

5. What values of p result in predictions that the helicopter will land in a finite amount of time for the

model
dh

dt
= �hp? Explain and show all work.
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Analyzing Autonomous DEs: Spotted Owls

A group of biologists are making predictions about the spotted owl population in a forest in the Pacific

Northwest. The autonomous di↵erential equation the scientist use to model the spotted owl population is

dP

dt
=

P

2

✓
1� P

5

◆✓
P

8
� 1

◆
, where P is in hundreds of owls and t is in years. The problem is that the

current number of owls is only approximately known.

1. Suppose the scientists estimate that currently P is about 5 (i.e. there are currently about 500 owls

in the forest). Since 5 is only an estimate, they make long-term predictions of the owl population for

the initial conditions P = 4.9, P = 5.0, and P = 5.1. Without using a graphing calculator or other
software, determine the long-term predictions for these initial conditions based on the di↵erential

equation. Are they similar or di↵erent? That is, will slightly di↵erent initial conditions yield only

slightly di↵erent long-term predictions, or will they be radically di↵erent? Carry out a similar analysis

if the current number of owls is somewhere around 8.

2. Give a one dimensional representation, without words, that would describe all solutions to the di↵er-

ential equation.
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3. A phase line is the standard one-dimensional diagram that depicts the qualitative behavior of

solutions to an autonomous di↵erential equation. Label the dots and add arrows to the figure below

to represent all solutions to the di↵erential equation in Problem 1.

4. For the di↵erential equation in problems 1-3 there are three equilibrium solutions. Recall that

equilibrium solutions are constant functions that satisfy the di↵erential equation. How do the other

solution functions near each equilibrium solution behave in the long term? If you were to label each

of these equilibrium solutions based on the way in which nearby solutions behave, what terms would

you use and why?
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Phase Lines

5. Dominique is working with the rate of change equation
dP
dt = 0.2P and thinks about solutions in

terms of whether they are increasing, decreasing, or remaining constant. She illustrates her thinking

with the phase line shown below.
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(a) Place your fingertip or other small item on the phase line at P = 0 and another fingertip or

small item at P = 0 on the P vs t axes and imagine time moving forward. Explain, with reasons,

what happens to your fingertips.

(b) Place your fingertip or other small item on the phase line at P = 1 and another fingertip or

small item at P = 1 on the P vs t axes at (0,1) and imagine time moving forward. Explain,

with reasons, what happens to your fingertips.

(c) Place two fingertips or two small items on the phase line, one at P = 1 and the other at P = 3.

What happens to your fingertips as time moves forward? How do your ideas relate to the

corresponding P versus t graphs?

(d) Explain how a person could think about the phase line as a one-dimensional projection of all of

the two-dimensional P (t) graphs of solutions.
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Homework Set 6

1. For an autonomous di↵erential equations, it is possible to view all of the solution function graphs

in terms of “prototypical” graphs. A prototypical solution graph represents an infinite number of

other solution graphs. For example, in part (i) below one can view the entire family of functions

that solve the di↵erential equation in terms of two di↵erent prototypical solution graphs separated

by an equilibrium solution: one prototypical solution graph is above the t-axis and one is below the

t-axis. Each is prototypical because it can stand for all other solution graphs (in its respective region)

through horizontal translation. Recall the “Making Connections” section of Unit 3.

(i)
dy

dt
= �y (ii)

dy

dt
= 2y

⇣
1� y

2

⌘
(iii)

dy

dt
= 2y

⇣
1� y

2

⌘
+ 3 (iv)

dy

dt
= y2

(a) For each di↵erential equation above, draw a phase line and representative graphs of solutions.

(b) For each di↵erential equation above, explain how your response to number 1a can be interpreted

in terms of prototypical solutions separated by equilibrium solutions.

2. For each of the following slope fields, create a di↵erential equation whose slope field would be similar

to the one given. Give reasons for why you created the di↵erential equation as you did. You may

create whatever scale on the axes that you want.

(a) (b)
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(c) (d)

3. For each part below, create a continuous, autonomous di↵erential equation that has the stated prop-

erties (if possible). Explain how you created each di↵erential equation and include all graphs or

diagrams you used and how you used them. If it is not possible to come up with a di↵erential

equation with the stated properties, provide a justification for why it cannot be done.

(a) Exactly three constant solution functions, two repellers and one attractor.

(b) Exactly two constant solution functions, one a repeller and one a node.

(c) Exactly two constant solution functions, both attractors.

4. For each part below, create an autonomous di↵erential equation that satisfies the stated criteria

(a) y(t) = 0 and y(t) = �4 are the only constant solution functions

(b) y(t) = e�t+1
is a solution

(c) y(t) = e2t�5
is a solution

(d) y(t) = 10e0.3t is a solution

(e) y(t) = 1� e�t
and y(t) = 1 + e�t

are solutions

5. For a phase line to be a meaningful tool, explain why it is essential for the di↵erential equation to

be autonomous.

6. In class you and your classmates continue to develop creative and e↵ective ways of thinking about

particular ideas or problems. Discuss at least one idea or way of thinking about a particular problem

that has been discussed in class (either in whole class discussion or in small group) that was particu-

larly helpful for enlarging your own thinking and/or that you disagreed with and had a di↵erent way

of thinking about the idea or problem.
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Cooling Co↵ee

A group of students want to develop a rate of change equation to describe the cooling rate for
hot co↵ee in order that they can make predictions about other cups of cooling co↵ee. Their idea is to use
a temperature probe to collect data on the temperature of the co↵ee as it changes over time and then to
use this data to develop a rate of change equation.

The data they collected is shown in the table below. The temperature C (in degrees Fahrenheit) was
recorded every 2 minutes over a 14 minute period.

Time (min) Temp. (�F)
0 160.3
2 120.4
4 98.1
6 84.8
8 78.5
10 74.4
12 72.1
14 71.5

1. Figure out a way to use this data to create a third column whose values approximate
dC

dt
, where C

is the temperature of the co↵ee.

2. Do you expect
dC

dt
to depend on just the temperature C, on just the time t, or both the temperature

C and the time t?

3. Sketch below your best guess for the graph of
dC

dt
.
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4. (a) Input the data from your extended table in question 1 into the GeoGebra applet

https://ggbm.at/uj2gbz3V to plot points for
dC

dt
vs. C. Does this plot confirm or reject your

sketch from question 3?

(b) Toggle on the curve fitting tool and find an equation that fits your data.
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5. One group of students figured out that a reasonable rate of change equation to be

dC

dt
= �0.4C + 28

which they rewrote as
dC

dt
= �0.4 (C � 70) .

Interpret the meaning of the number 70 in this equation. Does this rate of change equation also make
sense for predicting the future temperature of a glass of ice tea? Why or why not?

6. According to the rate of change equation from questions 4 and 5, is it possible for a graph of the
exact solution to look like the one below? Why or why not? Give more than one reason for your
answer.
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Population Growth - Limited Resources

A group of biologists want to study the population growth of certain bacteria in a laboratory. The scientists
realized that the culture for the bacteria does not provide unlimited resources. Hence, the rate of change

equation
dP

dt
= kP is not appropriate. They conducted experiments to determine how the rate of change

of population depends on just the population. The data they collected is shown in the table below (num-
bers are properly scaled). At various population levels, the scientists measured the population after one day.

Beginning
Population

Population after
one day

2 2.34
4 4.54
6 6.62
8 8.58
10 10.40
12 12.10
14 13.66
16 15.10
18 16.42
20 17.60

7. Create a third column whose values approximate dP
dt . Explain why the method you used to create

this column makes sense.

8. In this course we will call a graph of dP
dt vs. P , when dP

dt is an autonomous di↵erential equation, an
Autonomous Derivative Graph. Create an autonomous derivative graph and figure out a
way to analyze this graph to determine the long term behavior for each of the beginning populations
given in the table above.
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Analyzing Graphs of Autonomous Di↵erential Equations

9. A group of biologists is studying a particular bug population in a rainforest. They gathered data
about these bugs for di↵erent population values, N , at di↵erent times, t. The scientists reasoned
that the rate of change depended only on the population and not on time. They approximated
the derivatives dN

dt (as was done with the cooling co↵ee from before) and plotted the autonomous
derivative graph, as seen below:

For each part below, use the autonomous derivative graph to predict what the ultimate fate of the
population will be. Describe (in words) the long-term behavior of each solution corresponding to the
given initial condition. In addition, illustrate your conclusions with a suitable graph or graphs and
classify all equilibrium solutions as either an attractor, repeller, or node.

(a) N(0) = 2

(b) N(0) = 3

(c) N(0) = 4

(d) N(0) = 4.5

(e) N(0) = 6

(f) N(0) = 8
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10. Below is an autonomous derivative graph. Figure out the long-term behavior of every possible solution
function and illustrate your conclusions with a suitable graph or graphs.
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Homework Set 7

1. For this problem, use the co↵ee cooling rate of change equation

dC

dt
= �0.4C + 28.

(a) Is there ever a time when two cups of co↵ee, one at initially 160�F and one at 180�F, are the
exact same temperature? Answer this question according to the uniqueness theorem. Comment
on whether your answer matches what you expect to happen in real life?

(b) How long will it take a cup of hot co↵ee that is initially 180�F to cool down to 100�F? Use the
reverse product rule to figure this out and then check the reasonableness of your answer with
Euler’s method.

2. For each part below you are provided with an autonomous derivative graph. Figure out the long-
term behavior of every possible solution function. Illustrate your conclusions with representative y(t)
solution graphs and summarize your findings about the long-term behavior of di↵erent solutions in
paragraph form.

(a) (b)

3. For each part in problem 2, create a phase line and classify each equilibrium solution as either an
attractor, repeller, or node.

4. For problem 2b, use the uniqueness theorem to determine if any of the non-constant solution functions
ever reach the equilibrium solution of y(t) = 0 in a finite amount of time.

5. Given an autonomous di↵erential equation dy
dt = f(y) , give a general strategy for how to use an

autonomous derivative graph to determine the long term behavior of solution functions.
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6. Suppose you wish to predict future values of some quantity, y, using an autonomous di↵erential
equation (that is, dy/dt depends explicitly only on y). Experiments have been performed that give
the following information:

• The only equilibrium solutions are y(t) = 0, y(t) = 15, and y(t) = 60

• If the value of y is 100, the quantity decreases

• If the value of y is 30, the quantity increases

• If the value of y is negative, the quantity increases

(a) How many di↵erent phase lines match the above? Sketch all possible phase lines.

(b) Provide a rough sketch of an autonomous derivative graph for each of your phase lines in part
6a.

(c) For each of your di↵erent sketches in part 6b, develop a di↵erential equation that fits the basic
features.

7. In what ways is the letter y in the di↵erential equation dy
dt = .3y both a variable and a function? In

what ways is dy
dt a function?

8. Newton’s law of cooling is an empirical law that states that an object immersed in a constant, ambient
temperature will have its temperature change at a rate proportional to the di↵erence between the its
temperature and the ambient temperature. Explain how the cooling co↵ee problem reflects Newton’s
law of cooling.

9. A body was found in a temperature controlled environment (i.e., you know the room temperature)
and is subject to Newton’s law of cooling. Explain why you only need the room temperature and
the measurement of the body’s temperature at two di↵erent times to give an estimate of the time of
death.

Page 7.8
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Fish Harvesting

A mathematician at a fish hatchery has been using the di↵erential equation
dP

dt
= 2P

✓
1� P

25

◆
as a model

for predicting the number of fish that a hatchery can expect to find in their pond.

1. Use an autonomous derivative graph, a phase line, and a slope field to analyze what this di↵erential

equation predicts for future fish populations for a range of initial conditions. Present all three of

these representations and describe in a few sentences how to interpret them.
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2. Recently, the hatchery was bought out by fish.net and the new owners are planning to allow the

public to catch fish at the hatchery (for a fee of course). This means that the previous di↵erential

equation used to predict future fish populations needs to be modified to reflect this new plan. For the

sake of simplicity, assume that this new plan can be taken into consideration by including a constant,

annual harvesting rate k into the previous di↵erential equation. Below are two modifications to the

di↵erential equation that may account for the new plan, as well as an option to create your own

modification. Do you agree with (a) or (b)? If yes, explain why. If no, create your own modification

and explain your reasoning.

(a)
dP

dt
= 2P

✓
1� P

25

◆
� kP (b)

dP

dt
= 2P

✓
1� P � k

25

◆
(c) Create Your Own
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3. Your team of consultants settled on
dP

dt
= 2P

✓
1� P

25

◆
� k to model the new fishing plan. Analyze

the e↵ect of di↵erent choices for the value of k on the fish population. Synthesize your analysis in a

one page report for the new owners that illustrates the implications that various choices of k will

have on future fish populations. Your report may include one or more graphical representations but

must communicate the e↵ect of di↵erent k values in a concise way.
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4. In studying climate, scientists are often concerned about positive feedback loops: two or more pro-

cesses that amplify each other, creating a system of amplification that leads to a vicious cycle. One

example is the interaction of water vapor with global temperature. If global temperature increases,

the capacity of the atmosphere to contain evaporated water vapor also increases. If water resources

are available, this would result in an increased amount of water vapor in the atmosphere. Water

vapor is a greenhouse gas, thus if a climate system has more water vapor in the atmosphere, the

global temperature will increase due to the increased insulation of the atmosphere. This positive

feedback loop will eventually equilibrate at a higher temperature. Some scientists predict that a

global increase in average temperature of just two degrees would be enough to kick o↵ a system of

positive feedback loops that would equilibrate at a temperature at least 6 degrees higher than we

have now. This 6-degree increase would be enough to turn rainforests into deserts and melt ice caps.

It may even redistribute the areas of the world that can support human life, i.e. making previously

uninhabitable places, like the northern reaches of Siberia and Canada, inhabitable (though they may

not support agriculture) and previously inhabitable places, like coastal cities, uninhabitable.

(a) A modern pre-industrial average temperature at the equator is about 20 degrees Celsius. As-

suming that our current global climate system has not undergone this vicious cycle, model this

system with a phase line. What are the essential features of that phase line?

(b) What is a simple di↵erential equation that corresponds to your above phase line?
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(c) A group of scientists came up with the following model for this global climate system:

dC

dt
=

1

10

⇣
C � 20

⌘⇣
22� C

⌘⇣
C � 26

⌘
� k

where C is the temperature, in Celsius, and k is a parameter that represents governmental

regulation of greenhouse gas emissions. Assume the baseline regulation corresponds to k = 0,

increasing regulation corresponds to increasing k, and the current equatorial temperature is

around 20 degrees. To what equatorial temperature will the global climate equilibrate?

(d) Sketch a bifurcation diagram and use it to describe what happens to the global temperature for

various values of k.
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(e) Suppose at the start of a new governmental administration, the temperature at the equator is

about 20 degrees Celsius, and k = 0. Based on the model and other economic concerns, a gov-

ernment decides to deregulate emissions so that k = �0.5. Later, the Smokestack Association

successfully lobbied for a 5% change, resulting in k = �0.525. Subsequently, a new adminis-

tration undid that change, reverting to k = �0.5, and eventually back to k = 0. What is the

equilibrium temperature at the equator after all of these changes?
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(f) Use your bifurcation diagram to propose a plan that will return the temperature at the equator

to 20 degrees Celsius.
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Homework Set 8

1. (a) The owners of fish.net have settled on model dP/dt = 2P (1� P/25)� k to make their business

decisions, where P is the number of fish in thousands, and k is a harvesting rate measured in

thousands of fish per year. They initially allow a harvesting rate k = 12. If they allow fishing

to continue for a while at this rate, what does their model predict for the long term number of

fish in the lake?

(b) The early years of fish harvesting went well, so they increased the harvesting rate by a modest

amount. They now allow harvesting rate corresponding to k = 13. What does this model predict

will be the long term result of this fishing practice?

(c) The owners of fish.net panicked when their fish population reached P = 5 and decided to return

to their original business model with k = 12. Will the fish population return to the levels you

described in problem 1a? Why or why not?

2. The bifurcation diagram for an autonomous di↵erential equation dy/dt = f(y) is shown below.

The solid parts corresponds to stable equilibria and the dashed part is for unstable ones. f(y) has a
parameter c, and changing the value of that parameter changes the behavior of the system, as shown.
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(a) Sketch the phase lines when c = �20, c = �5, c = 0, and c = 10.

(b) Sketch the corresponding graphs of y vs. t for each of the choices of c listed above.

(c) For what values of c does the system have two attractors?

(d) As shown, the bifurcation diagram has two stable (solid) “branches” connected by an unstable

(dashed) branch. Would it be possible for the entire curve to be stable? Why or why not?

(e) If this model represents a physical system, and you measure that the system has a steady state

of y = 2, what value of c should you choose for your model?

(f) Again, let’s think of this model as representing some physical system, similar to the hatchery

example we considered in class. You are the owner of that system, and you have control over

the value of c. y(t) represents the state of your system at a given time. Consider the following

experiment.

i. Let’s say the system starts with an initial condition of y(0) = 0, and you fixed c at c = �10.

After a long time elapses, what value does y approach?

ii. Assume that y has evolved to your answer in problem 2(f)i, and that result is not something

you are completely happy with. You’ve heard that a company down the road is using c = 10,

so you make that change. What value does y approach now (after substantial time has

passed)?

iii. Assume that y has evolved now to your answer in 2(f)ii. Unfortunately, this new value of y
is even worse than the old one, so you want to change c back to c = �10. Will the system

evolve back to your answer in problem 2(f)i? Explain.

3. For each of the following, illustrate with suitable solution function graphs and/or phase lines the

way in which the solutions change as the value of r changes. Identify the precise value(s) of r for

which there is a either a change in the number of equilibrium solution(s) or a change in the type

of equilibrium solution(s). Explain in words the change that happens at each significant value of r
identified.

(a)
dy

dt
= (y � 3)

2
+ r

(b)
dy

dt
= y2 � ry + 1

(c)
dy

dt
= ry + y3

(d)
dy

dt
= y6 � 2y4 + r

4. For problem 3a, sketch a graph of the equilibrium solutions as r varies. Such a graph is referred to

as “bifurcation diagram” and the significant values of r are called “bifurcation values.”

5. For problem 3b, sketch a bifurcation diagram and identify the bifurcation values.

6. For problem 3c, sketch a bifurcation diagram and identify the bifurcation values. Why might this

bifurcation be called a “pitchfork bifurcation?”
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Rabbits and Foxes

Most species live in interaction with other species. For example, perhaps one species preys on another
species, like foxes and rabbits. Below is a system of rate of change equations intended to predict
future populations of rabbits and foxes over time, where R is the population (in hundreds or thousands,
for example) of rabbits at any time t and F is the population of foxes at any time t (in years).

dR

dt
= 3R� 1.4RF

dF

dt
= �F + 0.8RF

1. (a) In earlier work with the rate of change equation dP
dt = kP we assumed that there was only

one species, that the resources were unlimited, and that the species reproduced continuously.
Which, if any, of these assumptions is modified and how is this modification reflected in the
above system of di↵erential equations?

(b) Interpret the meaning of each term in the rate of change equations (e.g., how do you interpret
or make sense of the �1.4RF term) and what are the implications of this term on the future
predicted populations? Similarly for 3R, �F , and 0.8RF .

2. (a) Scientists studying a rabbit-fox population estimate that the current number of rabbits is 1
(scaled appropriately) and that the scaled number of foxes is 1. Use two steps of Euler’s method
with step size of 0.5 to get numerical estimates for the future number of rabbits and foxes as
predicted by the di↵erential equations.

t R F
0 1 1
0.5
1.0

(b) What are some di↵erent two dimensional and three dimensional ways to graphically depict your
(t, R, F ) values?
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Three Dimensional Visualization

3. A crop duster plane with a two blade propeller is rolling along a runway. On
the end of one of the propeller blades, which are rotating clockwise at a slow constant speed, is a
noticeable red paint mark. Imagine that for the first several rotations of the propeller blades the red
mark leaves a “trace” in the air as the plane makes its way down the runway.

(a) Simulate this scenario over time with a pipe cleaner. On appropriate combinations of the x,
y, and t axes, sketch what Angler, Sider, Fronter, and Topper would ideally see assuming that
they could always see the red mark. What view do you think is best and why?

Topper is directly above
the runway in a hot air balloon

moving with the airplane

Fronter

is on a truck moving
at the same speed
as the airplaneAngler

behind and o↵ to the
side of the airplane

moving with the airplane

Sider is on the runway
moving with the airplane

from the side

Sketch your ideas for each of the following:

(b) What if there was another paint mark on other end of the propeller, what, ideally, do the four
observers see then? How does the trace of this mark relate to the previous trace?

(c) What if there was a paint mark on the center of the propeller blade mechanism. What do the
observers ideally see then?

(d) How ideally would each observer see all of the above paint marks simultaneously?
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4. (a) For the system of di↵erential equations from problem 1,

dR

dt
= 3R� 1.4RF

dF

dt
= �F + 0.8RF

consider the perspectives of Angler, Sider, Fronter, and Topper. What are the coordinate axes
that correspond to each?

(b) Use the GeoGebra applet https://ggbm.at/U3U6MsyA to generate predictions for the future
number of rabbits and foxes if at time 0 we initially have 3 rabbits and 2 foxes (scaled appro-
priately). Generate and reproduce below the perspectives of Angler, Sider, Fronter, and Topper
from the crop duster problem.

(c) Use the same GeoGebra applet from problem 4b to experiment with di↵erent initial conditions
and interpret the nature of the numerical solutions in the context of Rabbits and Foxes.

(d) Determine an initial rabbit and fox population at time 0 such that the 3D graph of the solution
(Angler’s view) is a shift of the 3D graph in problem 4b along the t-axis. What connections
does this problem have to do with your study of autonomous first order di↵erential equations?
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5. (a) Suppose the current number of rabbits is 3 and the number of foxes is 0. Without using
any technology and without making any calculations, what does the system of rate of change
equations (same one as problem 4a) predict for the future number of rabbits and foxes? Explain
your reasoning.

(b) Use the same GeoGebra applet from problem 4b to generate the 3D plot and all three di↵erent
views or projections of the 3D plot. Show each graph and explain how each illustrates your
conclusion in problem 5a.

(c) Using Fronter’s view with initial condition R = 3 and F = 2, tell the story of what happens to
the rabbit and fox population as time continues.

6. (a) What would it mean for the rabbit-fox system to be in equilibrium? Are there any equilibrium
solutions to this system of rate of change equations? If so, determine all equilibrium solutions
and generate the 3D and other views for each equilibrium solution.

(b) For single di↵erential equations, we classified equilibrium solutions as attractors, repellers, and
nodes. For each of the equilibrium solutions in the previous problem, create your own terms to
classify the equilibrium solutions in 6a and briefly explain your reasons behind your choice of
terms.
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7. A group of scientists wants to graphically display the predictions for many di↵erent non-negative
initial conditions (this includes 0 values for R and F , but not negative values) to the rabbit-fox
system of di↵erential equations and they want to do so using only one set of axes. What one single
set of axes would you recommend that they use (R � F � t axes, t � R axes, t � F axes, or R � F
axes)? Explain.
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8. One view of solutions for studying solutions to systems of autonomous di↵erential equations is the
x� y plane, called the phase plane. The phase plane, which is Fronter’s view from the crop duster
problem, is the analog to the phase line for a single autonomous di↵erential equation.

(a) Consider the rabbit-fox system of di↵erential equations and a solution graph, as viewed in the
phase plane (that is, the R-F plane), and the two points in the table below. These two points
are on the same solution curve. Recall that the solutions we’ve seen in the past are closed curves,
but notice that the solution could be moving clockwise / counterclockwise. Fill in the following
table and decide which way the solution should be moving, and explain your reasoning.

t R F dR/dt dF/dt dF/dR

0 2 3

2.07 0.756 1.431

(b) On the same set of axes from problem 8a plot additional vectors at the following points and
state what is unique about these vectors.

R F dR/dt dF/dt dF/dR

1.25 0

1.25 1

1.25 2

1.25 3
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Vector Fields

Slope fields are a convenient way to visualize solutions to a single di↵erential equation. For systems of
autonomous di↵erential equations the equivalent representation is a vector field. Similar to a slope field, a
vector field shows a selection of vectors with the correct slope but with a normalized length. In the previous
problem you plotted a few such vectors but typically more vectors are needed to be able to visualize the
solution in the phase plane.

9. On a grid where x and y both range from -3 to 3, plot by hand a vector field for the system of
di↵erential equations

dx

dt
= y � x

dy

dt
= �y

and sketch in several solution graphs in the phase plane.
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10. (a) You may have noticed in problem 9 that along x = 0 all the vectors have the same slope.
Similarly for vectors along the y = x. Any line or curve along which vectors all have the same
slope is called an isocline. An isocline where dx/dt = 0 is called an x-nullcline because there
is the horizontal component to the vector is zero and hence the vector points straight up or
down. An isocline where dy/dt = 0 is called a y-nullcline because the vertical component of
the vector is zero and hence the vector points left or right. On a grid from -4 to 4 for both axes,
plot all nullclines for the following system:

dx

dt
= 3x� 1.4xy

dy

dt
= �y + 0.8xy

(b) How do these nullclines point to the cyclic nature of the Rabbit-Fox system?
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11. A certain system of di↵erential equations for the variables R and S describes the interaction of
rabbits and sheep grazing in the same field. On the phase plane below, dashed lines show the R and
S nullclines along with their corresponding vectors.

(a) Identify the R nullclines and explain how you know.

(b) Identify the S nullclines and explain how you know.

(c) Identify all equilibrium points.

(d) Notice that the nullclines carve out 4 di↵erent regions of the first quadrant of the RS plane.
In each of these 4 regions, add a prototypical-vector that represents the vectors in that region.
That is, if you think the both R and S are increasing in a certain region then, draw a vector
pointing up and to the right for that region.

(e) What does this system seem to predict will happen to the rabbits and sheep in this field?
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Homework Set 9

1. (a) Consider again the crop duster plane problem but this time the red mark slowly drifts toward
the center as the propellers rotate as the plane rolls along the runway. Sketch what the four
observers see this time.

(b) What do the four observers ideally see if the propellers are not rotating and the red mark drifts
toward the center at a rate proportional to its distance from the center as the plane rolls along
the runway?

2. Consider the same system of di↵erential equations from problem 1. Use the GeoGebra applet
https://ggbm.at/U3U6MsyA to generate predictions for the future number of rabbits and foxes if at
time 0 we initially have the following di↵erent initial conditions: (i) 2 rabbits and 3 foxes, (ii) 1.5
rabbits and 4 foxes, and (iii) 4 rabbits and 2 foxes. For each of the di↵erent views, graph all three
solutions on the same set of axes.

3. (a) Referring back to the rabbit and fox system of di↵erential equations, suppose the current number
of rabbits is 0 and the number of foxes is 2. Without using any technology and without making
any calculations, what does the system of rate of change equations predict for the future number
of rabbits and foxes? Explain your reasoning.

dR

dt
= 3R� 1.4RF

dF

dt
= �F + 0.8RF

(b) Use the GeoGebra applet to generate the 3D plot and all three di↵erent views or projections of
the 3D plot. Show each graph and explain how each illustrates your conclusion in problem 3a).

(c) Suppose the current number of rabbits is 0 and the number of foxes is 6. What does the system
of rate of change equations predict for the future number of rabbits and foxes? How and why is
this prediction related to the prediction when the initial number of rabbits is 0 and the number
of foxes is 2?
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4. Here are three vector fields, A, B, and C. Below the vector fields are some pairs of rate of change
equations. Determine which of the pairs match each of the vector fields. Write an explanation of each.

(a) (b)

(c)

(i)

dx

dt
= x+ y

dy

dt
= �x+ y

(ii)

dx

dt
= x� 0.1xy

dy

dt
= �y + 0.1xy

(iii)

dx

dt
= 2x� 3y

dy

dt
= x+ y

(iv)

dx

dt
= x+ y

dy

dt
= 2x+ 2y
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5. In previous problems dealing with two species, one of the animals was the predator and the other was
the prey. In this problem we study systems of rate of change equations designed to inform us about
the future populations for two species that are either competitive (that is both species are harmed
by interaction) or cooperative (that is both species benefit from interaction).

(a) Which system of rate of change equations describes a situation where the two species compete
and which system describes competitive species? Explain your reasoning.

(A) (B)
dx

dt
= �5x+ 2xy

dy

dt
= �4y + 3xy

dx

dt
= 3x(1� x

3
)� 1

10
xy

dy

dt
= 2y(1� y

10
)� 1

5
xy

(b) For system (A), plot all nullclines and use this plot to determine all equilibrium solutions. Verify
your equilibrium solutions algebraically.

(c) Use your results from 5b to sketch in the long-term behavior of solutions with initial conditions
anywhere in the first quadrant of the phase plane. For example, describe the long-term behavior
of solutions if the initial condition is in such and such region of the first quadrant. Provide a
sketch of your analysis in the x-y plane and write a paragraph summarizing your conclusions and
any conjectures that you have about the long-term outcome for the two populations depending
on the initial conditions.

6. Consider the following systems of rate of change equations:

System A System B
dx

dt
= 3x(1� x

10
)� 1

20
xy

dy

dt
= �5y +

xy

20

dx

dt
= 3x� xy

100
dy

dt
= 15y(1� y

17
) + 25xy

In both of these systems, x and y refer to the number of two di↵erent species at time t. In particular,
in one of these systems the prey are large animals and the predators are small animals, such as
piranhas and humans. Thus it takes many predators to eat one prey, but each prey eaten is a
tremendous benefit for the predator population. The other system has very large predators and very
small prey.

(a) For both systems of di↵erential equations, what does x represent? The predator or the prey?
Explain.

(b) What system represents predator and prey that are relatively the same size? Explain.

(c) For system (A), plot all nullclines and use this plot to determine all equilibrium solutions. Verify
your equilibrium solutions algebraically.

(d) Use your results from 6c to sketch in the long-term behavior of solutions with initial conditions
anywhere in the first quadrant of the phase plane. For example, describe the long-term behavior
of solutions if the initial condition is in such and such region of the first quadrant. Provide a
sketch of your analysis in the x-y plane and write a paragraph summarizing your conclusions and
any conjectures that you have about the long-term outcome for the two populations depending
on the initial conditions.

Page 9.12



Unit 9: Introduction to Systems

7. Provide sketches of x vs t and y vs t for each of the following phase planes and solution curves.

(a) (b)

(c) (d)
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Unit 10: Spring Mass System and Linear Systems

Spring-Mass Motion Investigation

In this problem we use Newton’s Law of motion (
P

F = ma ) to develop a system of rate of change

equations in order to be able to describe, explain, and predict the motion of a mass attached to a spring.

1. Depending on the values for parameters like the sti↵ness of the spring k, the weight of the object

attached to the spring m, and the amount of friction, di↵erent behaviors may be possible. Imagine

for a set spring and mass you vary the amount of friction on the surface. What do you imagine the

various position versus velocity graphs would look like? Provide rough sketches.

2. Use Newton’s Law of motion to develop a rate of change equation to model the motion of an object

on a spring. Assume that the only forces acting on the object are the spring force (�kx, where k is

the spring constant) and the friction force (assumed to be proportional to the velocity, namely �bdxdt ,
where b is the damping coe�cient).
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3. Application of Newton’s Law of Motion to the spring-mass situation in the previous problem results

in the following:

d2x

dt2
+

b

m

dx

dt
+

k

m
x = 0,

where x is the position of the object attached to the end of the spring, m is the mass of the object,

b is the friction parameter (also called damping coe�cient), and k is the spring constant. Because

dx
dt = y, where y is the velocity, and

dy
dt =

d2x
dt2 , we can converting this to a system of two di↵erential

equations as follows:

dx

dt
= y

dy

dt
= � k

m
x� b

m
y

Use the GeoGebra applet https://ggbm.at/vT5tgWrg to investigate the motion of the object as

depicted in the phase plane when m = 1, the spring constant k = 2, and the friction parameter, b,
varies between 0 and 4. In particular, how does the vector field (and corresponding behavior of the

mass) change when the friction parameter increases from 0 to say 2, 2.3, 3, or 3.8? Use the space

below to record your observations.
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4. Joey and Kara set the friction parameter to 3, resulting in the following system:

dx

dt
= y

dy

dt
= �2x� 3y

They notice that graphs of solutions in the position-velocity plane seem to get pulled into the origin

along a straight line. Help Joey and Kara figure out how to use algebra to find the slope of this

straight line.
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5. Continuing their investigation with the friction parameter set to 3, Kara and Joey are working to

find the slope of the observed straight line. Joey sets up the equation
�2x� 3y

y
=

y

x
and Kara sets

up the equation
�2x� 3ax

ax
= a. Interpret Joey’s and Kara’s equations and then solve both.

6. Place your finger on the dotted line starting in the second quadrant and trace out the path that the

mass takes, as represented in the phase plane. Describe what happens to your finger and relate this

to the motion of the mass.

7. Joey found another straight line solution when the friction parameter b was set to 1. Use algebra to

find the slope or explain why he is mistaken.
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8. In your investigation of the spring-mass system

dx

dt
= y

dy

dt
= �2x� 3y

you should have found that when the friction parameter was equal to 3, solutions with initial condi-

tions that are either on the line y = �x or on the line y = �2x head directly toward the origin along

a straight path.

For the initial condition (-2, 4), what are the equations for x(t) and y(t)? Hint: substitute y = �2x
and x = �y/2 into dx/dt and dy/dt, respectively.
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9. Susan notices that the x(t) and y(t) equations have the same exponent, and then makes the conjecture

that along any straight line solution, x(t) and y(t) must have the same exponent. Do you agree with

her conjecture? Why or why not?

10. (a) What are the x(t) and y(t) equations for the solution with initial condition (-1, 2)? What does

the 3D graph of this solution look like?

(b) If you multiplied x(t) and y(t) equations from problem 10a by some number, say -3 for example,

is the result also a solution to the system of di↵erential equations? Algebraically show that your

conclusion is correct.

(c) What are the x(t) and y(t) equations for any solution with initial condition along the line

y = �2x?

11. For the initial condition (-2, 2), what are the equations for x(t) and y(t)? What are the x(t) and y(t)
equations for any solution with initial condition along the line y = �x?
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12. (a) Suppose you were to start with an initial condition somewhere in the second quadrant between

the two straight line solutions, say at (-4, 6). Sketch what you think the solution as viewed in

the phase plane looks like and explain your reasoning.

(b) Notice that (�4, 6) is a linear combination of the initial conditions (�2, 4) and (�2, 2), that is,
(�4, 6) = (�2, 4) + (�2, 2). Show that the solution with the initial condition (-4, 6) is also a

linear combination of the solutions with initial conditions (�2, 4) and (�2, 2).

(c) According to your result in 12b, what does the solution in the phase plane look? Explain your

reasoning.
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13. (a) What are the x(t) and y(t) equations for the solution with initial condition (2, 5)?

(b) According to your x(t) and y(t) equations, what does the solution in the phase plane look

like? Explain your reasoning and provide a sketch. Use the GeoGebra applet,

https://ggbm.at/cMSUC7qR to corroborate your conclusion.

(c) Develop an argument that almost all graphs of solutions in the phase plane head into the origin

with a slope of -1.
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14. As a review of this unit, answer the following questions for the following system

dx

dt
= �3x+ 2y

dy

dt
= 6x+ y

(a) Find the slopes of the straight line solutions.

(b) For each straight line, find a solution.

(c) Form the general solution.

(d) In the phase plane sketch the straight line solutions and several non-straight line solutions.

(e) How would you classify the equilibrium point?
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Homework Set 10

1. Consider the system from questions 3-7 from Unit 10. What is the smallest value of b for which we

get solutions that, when viewed in the position-velocity plane, lie along a straight line? Algebraically

support your conclusion.

2. Straight line Solutions for Systems of the Form

dx

dt
= ax+ by

dy

dt
= cx+ dy

Systems of equations of the form above are a special type of linear system. Linear systems model

important applications, such as the spring mass system. Moreover, it is possible to find the general

solution for any such linear system. For each of the system of di↵erential equations below, address

the following questions:

• How many equilibrium solutions are there are and what are they?

• Are there solutions that, when viewed in the phase plane (i.e., the x � y plane), lie along a

straight line? If so, algebraically figure out the exact slope of the straight line(s).

• For those systems that do have solutions that, when viewed in the phase plane, lie along a

straight line, figure out the exact x(t) and y(t) equations for any solution with initial condition

on the straight line(s).

• For those systems that have straight line solutions, write down the general solution.

• How would you classify the equilibrium solution? Create terms if needed to classify any new

types of equilibrium solutions and explain the meaning of your terms.

• For those systems of di↵erential equations that do have solutions that, when viewed in the phase

plane, lie along straight lines, what do these straight lines look like in 3D? Provide your best

3D sketch.

(a)

dx

dt
= �3x+ 2y

dy

dt
= 6x+ y

(b)

dx

dt
= x+ y

dy

dt
= �x+ y

(c)

dx

dt
= �2x� 2y

dy

dt
= �x� 3y

(d)

dx

dt
= 2x+ 2y

dy

dt
= x+ 3y
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3. You figured out from our analysis on the previous problems, sometimes there are solutions in the

phase plane that lie along a straight line headed directly towards or away from the equilibrium

solution at the origin and sometimes there are not.

(a) Explain in words how you figure out whether there are any straight line solutions in the phase

plane and if so, what the slopes of this line or lines are. Demonstrate how your approach works

in general for linear systems of the form

dx

dt
= ax+ by

dy

dt
= cx+ dy

(b) Explain in words how you figure out the x(t) and y(t) equations for any and all straight line

solutions in the phase plane. Demonstrate how your approach works in general for linear systems

of the form

dx

dt
= ax+ by

dy

dt
= cx+ dy

(c) Explain in words why having two di↵erent straight line solutions is useful for finding the x(t)
and y(t) equations for any initial condition.

Page 10.11



Unit 10: Spring Mass System and Linear Systems

4. Below is a vector field for the system of di↵erential equations:

dx

dt
= 2x+ 3y

dy

dt
= �4y

Straight line solutions lie along the line y = 0 (with positive exponent in the x(t) and y(t) equations)
and along the line y = �2x (with negative exponent in the x(t) and y(t) equations).

(a) Consider two di↵erent initial conditions, one at the point (1, 0) and one at the point (3, 0).

Determine, with reasons, what happens to the graphs of the two solutions with these initial

conditions as time progresses.

(b) Repeat problem 4a for the initial conditions (-1, 2) and (-3, 6).
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5. Find a value or a range of values for the parameter n between -4 and 4 (including non-integer values)

in the system of di↵erential equations

dx

dt
= �3x+ ny

dy

dt
= 6x+ y

so that when you view solutions in the x-y plane there are

(a) exactly two di↵erent straight line solutions

(b) no straight line solutions

(c) exactly one straight line solution

(d) an infinite number of equilibrium solutions and an infinite number of straight line solutions

6. Consider the following system of di↵erential equations:

dx

dt
= 2x

dy

dt
= 2y

(a) Without using technology, sketch many di↵erent solutions in the phase plane. Explain your

reasoning.

(b) Unlike other systems of di↵erential equations that we have been studying, this system can be

solved using techniques from our study of 1-dimensional systems. What makes this system

di↵erent?

(c) Find the general solution in two ways, one using separation of variables and the other using

straight line techniques.

(d) Explain how the general solution can help you make sense of the solution graphs in the phase

plane.

7. Without using technology, sketch many di↵erent solutions in the phase plane for the following system

of di↵erential equations. Explain your reasoning. [Hint : how many equilibrium solutions are there?]

dx

dt
= �3x� 1

2
y

dy

dt
= 6x+ y
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8. A Swaying Skyscraper: The following system of rate of change equations is a model for helping

us make predictions about the motion of a tall building.

dx

dt
= y

dy

dt
= �x� y + x3

In this simplified system of rate of change equations, x stands for the amount of displacement of

the building from the vertical position at any time t and y stands for the horizontal velocity of the

building at any time t. Use the GeoGebra Vector Field applet, https://ggbm.at/kkNXUVds, as a

tool to explore solutions as viewed in the xy-plane (i.e., the phase plane).

(a) Determine all equilibrium solutions and explain the meaning of each one in terms of the swaying

skyscraper. Create any terms needed to classify new types of equilibrium solutions and briefly

explain your reasons or imagery behind your choice of terms.

(b) Provide a sketch of several representative curves in the phase plane and give an interpretation

for the motion of the building for the di↵erent types of curves (e.g., does the building remain

standing? If so, for what initial conditions? For what range of initial conditions is a disaster

predicted?)
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Spiraling Solutions - Spring Mass Revisited

In a previous problem we applied Newton’s law of motion for a spring mass system and obtained the second

order di↵erential equation
d2x

dt2
+

b

m

dx

dt
+

k

m
x = 0, where x is the position of the object attached to the end

of the spring, m is the mass of the object, b is the damping coe�cient, and k is the spring constant. Using

the fact that velocity is the derivative of position and choosing the mass m = 1 and the spring constant

k = 2, we converted this to the following system of two di↵erential equations:

dx

dt
= y

dy

dt
= �2x� by

We were able to figure out the x(t) and y(t) equations when the value of the friction parameter was such

that there were straight line solutions in the phase plane. Such a situation is typically referred to as

overdamped. The situation is called damped when the di↵erential equations predict that the mass will

oscillate about the 0 position and undamped when there is no friction. In the following problems we fig-

ure out the x(t) and y(t) equations for the damped. We consider the undamped situation in the homework.

The vector field for the case when b = 2 is shown below. Based on this vector field, it appears that the

di↵erential equations predict that the mass will oscillate back and forth. Even though there are not any

straight line solutions, we can still use the same algebraic approach as before to get the x(t) and y(t)
equations for any initial condition, but we will have to deal complex numbers. Problems 1-7 outline a way

to do this.
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1. For the system of di↵erential equations

dx

dt
= y

dy

dt
= �2x� 2y

use the same algebraic approach as before to verify that the slopes of the “straight line” solutions

are �1± i.

2. For solutions with “straight line” slope y = (�1 + i)x, find the x(t) and y(t) equations (in terms of

complex numbers) for the solution along this “straight line” with initial condition (1,�1 + i).
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3. For solutions with “straight line” slope y = (�1 � i)x, find the x(t) and y(t) equations (in terms of

complex numbers) for the solution along this “straight line” with initial condition (1,�1� i).

4. Use Euler’s formula ea+ib
= eaeib = ea(cos b + i sin b) to rewrite the x(t) and y(t) equations from

problem 2 (call these x1(t) and y1(t)) and then again from problem 3 (call these x2(t) and y2(t)).
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5. Denise suggests that if you add

✓
x1(t)
y1(t)

◆
to

✓
x2(t)
y2(t)

◆
the resulting pair of equations is (i) real valued

and (ii) a solution to the same system of di↵erential equations. Verify that this is true.

6. Verify that if you subtract

✓
x1(t)
y1(t)

◆
from

✓
x2(t)
y2(t)

◆
and multiply the result by the complex number i,

then the resulting pair of equations will be a real and a solution to the same system of di↵erential

equations.
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7. (a) Form the general solution to the system of di↵erential equations

dx

dt
= y

dy

dt
= �2x� 2y

(b) What aspect of your general solution could be interpreted as the e↵ect of friction on the spring

mass system?

(c) Find the particular solution for the initial condition (2, 3) and sketch the x vs t and y vs t
graphs.
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Homework Set 11

1. The general solution to

dx

dt
= y

dy

dt
= �2x� 2y

is

x(t) = c1e
�t

cos(t) + c2e
�t

sin(t)

y(t) = c1e
�t
(� cos(t)� sin(t)) + c2e

�t
(� sin(t) + cos(t))

Which part(s) of the general solution accounts for the fact that the di↵erential equations predict that

the mass will oscillate about the zero position? Which part(s) of the general solution accounts for

the fact that the amplitude of the oscillations decreases over time?

2. Suppose that for a di↵erent system of di↵erential equations you got the exact same general solution

as homework problem 1 except instead of e�t
you got et. How would this change graphs of solutions

in the phase plane? Explain.

3. Find the general solution to the spring mass problem when there is no friction. Sketch these solution

in the phase plane and explain how this general solution fits with your expectation for the behavior

of the mass over time. Note: when there is no friction, b = 0, and the spring constant k = 2, we get

dx

dt
= y

dy

dt
= �2x
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4. Consider the phase planes below:

(A) (B)

(C) (D)

For each sentence below, fill in the blank with choices from the following two lists:

Spring System (First Blank) Solutions (Second Blank)
a damped spring c1 cos(t) + c2 sin(t)

an overdamped spring e�t
(c1 cos(t) + c2 sin(t))

an undamped spring et(c1 cos(t) + c2(sin(t))
something other than a spring c1et + c2e2t

c1e�t
+ c2e�2t

c1e�t
+ c2e2t

c1et + c2e�2t

Phase plane (A) corresponds to and the solutions look like x(t)=

Phase plane (B) corresponds to and the solutions look like x(t)=

Phase plane (C) corresponds to and the solutions look like x(t)=

Phase plane (D) corresponds to and the solutions look like x(t)=
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5. What type of system (undamped, damped, overdamped) do the following best correspond to? Explain

your reasoning.

(a) A car that bounces every time it hits a bump

(b) A pendulum immersed in a vat of honey

(c) A bungee jumper

6. In each part, write a di↵erential equation corresponding to the given scenario:

(a) An undamped spring

(b) An underdamped spring

(c) An overdamped spring

7. Does Adding Solutions Always Result in Another Solution?

In deriving the general solution to the spring mass problem, two solutions were added to get another

solution. This worked for the particular equations at hand, but does adding two solutions to a system

of di↵erential equations of the form

dx

dt
= ax+ by

dy

dt
= cx+ dy

always result in another solution to the same system of di↵erential equations? Below is a proof that

this in fact is true.

Claim: If

✓
x1(t)
y1(t)

◆
and

✓
x2(t)
y2(t)

◆
are solutions (not necessarily straight line solutions) to a system of

di↵erential equations of the form

dx

dt
= ax+ by

dy

dt
= cx+ dy

then the sum of these two solutions is also a solution. That is, if we call the sum of these two solutions✓
x3(t)
y3(t)

◆
where

✓
x3(t)
y3(t)

◆
=

✓
x1(t)
y1(t)

◆
+

✓
x2(t)
y2(t)

◆
=

✓
x1(t) + x2(t)
y1(t) + y2(t)

◆
,

then

✓
x3(t)
y3(t)

◆
is also a solution to the same system of di↵erential equations.

Proof: In order to show that

✓
x3(t)
y3(t)

◆
is a solution, we need to verify it satisfies the system of

di↵erential equations. This is, we need to show that

d

dt
x3(t) = ax3(t) + by3(t)

d

dt
y3(t) = cx3(t) + dy3(t)

.
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Since ✓
x3(t)
y3(t)

◆
=

✓
x1(t) + x2(t)
y1(t) + y2(t)

◆
,

we know that

d

dt
x3(t) =

d

dt
x1(t) +

d

dt
x2(t)

d

dt
y3(t) =

d

dt
y1(t) +

d

dt
y2(t)

. (1)

Because

✓
x1(t)
y1(t)

◆
is a solution, it satisfies the system of di↵erential equations. That is,

d

dt
x1(t) = ax1(t) + by1(t)

d

dt
y1(t) = cx1(t) + dy1(t)

(2)

Similarly, since

✓
x2(t)
y2(t)

◆
is a solution,

d

dt
x2(t) = ax2(t) + by2(t)

d

dt
y2(t) = cx2(t) + dy2(t)

(3)

Substituting (2) and (3) into (1) yields

d

dt
x3(t) = ax1(t) + by1(t) + ax2(t) + by2(t)

d

dt
y3(t) = cx1(t) + dy1(t) + cx2(t) + dy2(t)

.

Rearranging terms yields

d

dt
x3(t) = ax1(t) + ax2(t) + by1(t) + by2(t) = a[x1(t) + x2(t)] + b[y1(t) + y2(t)]

d

dt
y3(t) = cx1(t) + cx2(t) + dy1(t) + dy2(t) = c[x1(t) + x2(t)] + d[y1(t) + y2(t)]

.

Finally, using the fact that ✓
x3(t)
y3(t)

◆
=

✓
x1(t) + x2(t)
y1(t) + y2(t)

◆
,

yields

d

dt
x3(t) = ax3(t) + by3(t)

d

dt
y3(t) = cx3(t) + dy3(t)

which is what we set out to show. Therefore

✓
x3(t)
y3(t)

◆
is also a solution to the system of di↵erential

equations.
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(a) Suppose that

✓
x1(t)
y1(t)

◆
and

✓
x2(t)
y2(t)

◆
are solutions to the system of di↵erential equations

dx

dt
= ax+ by + 1

dy

dt
= cx+ dy + 2

where a, b, c, and d are constants. Josh claims that the sum of these two solutions is also a

solution to the same system of di↵erential equations. Do you agree with his claim? Either

develop a similar proof as above to support this claim or point to where (and why) the above

proof fails.

(b) Suppose that

✓
x1(t)
y1(t)

◆
and

✓
x2(t)
y2(t)

◆
are solutions to the system of di↵erential equations

dx

dt
= ax2 + by

dy

dt
= cx+ dy

where a, b, c, and d are constants. Angela claims that the sum of these two solutions is also

a solution to the same system of di↵erential equations. Do you agree with her claim? Either

develop a similar proof as above to support this claim or point to where (and why) the above

proof fails.

Page 11.10



Unit 12: Eigentheory Applied to Linear Systems

Equilibrium Solutions for Linear Systems

dx

dt
= ax+ by

dy

dt
= cx+ dy

1. For each part below, use two di↵erent ways (one algebraic and one geometric using nullclines) to

figure out the number and location of equilibrium solutions.

(a)

dx

dt
= 3x+ 2y

dy

dt
= �2y

(b)

dx

dt
= 4x� 2y

dy

dt
= �2x+ y

2. Is it possible to find values of a, b, c, d such that the system of di↵erential equations

dx

dt
= ax+ by

dy

dt
= cx+ dy

has exactly two equilibrium solutions? Explain why or why not.

3. Develop criteria (in terms of the parameters a, b, c, and d) that tell us about the number and location

of equilibrium solutions for systems of di↵erential equations of the form

dx

dt
= ax+ by

dy

dt
= cx+ dy

.
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Matrix Notation and Equilibrium Solutions for Linear Systems

dx

dt
= ax+ by

dy

dt
= cx+ dy

One way to approach problem 3 is to think about there being an infinite number of equilibrium solutions

when the two nullclines coincide. That is, when the equations
0 = ax+ by

0 = cx+ dy
determine the same set of

points. Put another way, the equations are dependent when y = �a

b
x and y = � c

d
x are the same equation.

Thus, �a

b
= � c

d
, which says that �ad = �cb. Rewriting this yields ad� bc = 0.

As shown next, another way to arrive at this result is to use matrix notation and the fact that two equations

are dependent when the determinant of the matrix is zero.

ax+ by = 0

cx+ dy = 0
=)

✓
a b
c d

◆✓
x
y

◆
=

✓
0

0

◆

Thus, the equations
ax+ by = 0

cx+ dy = 0
are dependent when the determinant of the coe�cient matrix

✓
a b
c d

◆

is zero. That is, when ad� bc = 0.

Next, we develop an approach for finding the general solution to a system of di↵erential equations of the

form

dx
dt = ax+ by
dy
dt = cx+ dy

by first finding the value of the exponent (that is, the eigenvalue) associated with

any straight line solution before finding the slope of the straight line solutions (typically called eigensolu-
tions). Note that in your previous work you first found the slope of straight line solutions and then found

the exponent. Some students have referred to this as the “slope first” method. In the pages that follow,

an alternative approach is developed the “eigenvalue first” method.

We develop this alternative method for four reasons:

• The eigenvalue first method can be used for systems of three or more di↵erential equations whereas

the slope first method cannot.

• Oftentimes just knowing the eigenvalues is su�cient for understanding the overall picture of solutions

in the phase plane and so therefore this method is more e�cient.

• The eigenvalue first approach makes important connections with linear algebra.

• The eigenvalue first approach is algebraically more e�cient.
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Eigenvalue First Method

For linear systems of the form

dx
dt = ax+ by
dy
dt = cx+ dy

, one way to determine the exponent (i.e. �, the eigenvalue)

for possible straight line solutions (or eigensolutions) is to use the fact that if eigensolutions exist in the

phase plane, then
dx
dt = �x and

dy
dt = �y.

4. Explain why this has to be true.

Combining the fact that

dx
dt = ax+ by
dy
dt = cx+ dy

with the fact that for straight line solutions
dx
dt = �x and

dy
dt = �y

along the straight line, we can set up the following two equations:

ax+ by = �x
cx+ dy = �y

(1)

Rearranging these equations we get

(a� �)x+ by = 0

cx+ (d� �)y = 0
(2)

Note that although these equations look similar to the nullcline equations, the coe�cients are di↵erent.

If the equations from (2) are dependent then you get straight line solutions with a particular value of �
corresponding to an exponent from the straight line solution.

5. Explain why this has to be true.
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Rewriting these dependent equations in slope form yields y = �a��
b x and y = � c

d��x and thus

�a��
b = � c

d�� . Rearranging this last equation we get the following:

(a� �)(d� �)� bc = 0

)�2 � (a+ d)�+ (ad� bc) = 0

)� =
(a+ d)±

p
(a+ d)2 � 4(ad� bc)

2

We can more e�ciently obtain this same result using matrix notation and the fact that two equations

are dependent when the determinant of the coe�cient matrix is zero as follows:

(a� �) + by = 0

cx+ (d� �)y = 0
=)

✓
a� � b
c d� �

◆✓
x
y

◆
=

✓
0

0

◆

Thus, the equations
(a� �) + by = 0

cx+ (d� �)y = 0
are dependent when the determinant of the coe�cient matrix

✓
a� � b
c d� �

◆

is zero. That is, when (a� �)(d� �)� bc = 0.

EXAMPLE:

Determine the general solution for the system of di↵erential equations

dx
dt = 4x+ 2y
dy
dt = x+ 3y

using the “eigenvalue first” approach.

In order to get eigensolutions, we need to have

4x+ 2y = �x
x+ 3y = �y

)(4� �)x+ 2y = 0

x+ (3� �)y = 0

)
✓
4� � 2

1 3� �

◆✓
x
y

◆
=

✓
0

0

◆

)(4� �)(3� �)� 2 = 0

)�2 � 7�+ 10 = 0

)(�� 5)(�� 2) = 0

)� = 2,� = 5

For � = 2

Since these two equations
4x+ 2y = 2x
x+ 3y = 2y

are dependent, we can use either one to determine the

straight line of vectors (called eigenvectors) in the phase plane. In this case, straight line solutions

are found along the line y = �x.
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Any solution along this line can therefore be written as

✓
x(t)
y(t)

◆
= k1e

2t

✓
1

�1

◆
.

For � = 5

Since these two equations
4x+ 2y = 5x
x+ 3y = 5y

are dependent, we can use either one to determine the

straight line of vectors (called eigenvectors) in the phase plane. In this case, straight line solutions

are found along the line y =
1
2x.

Any solution along this line can therefore be written as

✓
x(t)
y(t)

◆
= k2e

5t

✓
2

1

◆
.

The general solution is therefore

✓
x(t)
y(t)

◆
= k1e

2t

✓
1

�1

◆
+ k2e

5t

✓
2

1

◆
.

6. In the previous example the general solution was determined to be

✓
x(t)
y(t)

◆
= k1e

2t

✓
1

�1

◆
+ k2e

5t

✓
2

1

◆
.

What is the specific solution for the initial condition (�3,�2)? Without using technology, sketch the

graph of this solution in the phase plane (for t ! 1 and as t ! �1) and explain how you figured

out what the graph looks like based on the equations for the solution.

Page 12.5



Unit 12: Eigentheory Applied to Linear Systems

Homework Set 12

1. If the general solution for a system of di↵erential equations of the form

dx
dt = ax+ by
dy
dt = cx+ dy

is ✓
x(t)
y(t)

◆
= k1e

�2t

✓
�1

4

◆
+ k2e

�t

✓
2

1

◆
,

what do solutions in phase plane look like? What do solutions that are not straight lines look like?

Do they curve a particular way? Figure out a way to use the general solution (without technology)

to decide. Explain and graph your ideas.

2. Repeat problem 1 for the general solution

✓
x(t)
y(t)

◆
= k1e

�t

✓
2

1

◆
+ k2e

3t

✓
�1

1

◆
.

3. Repeat problem 1 for the general solution

✓
x(t)
y(t)

◆
= k1e

0t

✓
1

2

◆
+ k2e

�2t

✓
�3

2

◆
.

4. For each of the following systems of di↵erential equations, find the general solution and then sketch

the phase portrait (i.e. graphs of solutions viewed in the phase plane) without using technology.

(a)

dx
dt = 2x+ y
dy
dt = x+ y

(b)

dx
dt = �4x� 2y
dy
dt = �x� 3y

(c)

dx
dt = 4x+ 2y
dy
dt = x+ 3y

(d)

dx
dt = 4x� 2y
dy
dt = �2x+ y

(e)

dx
dt = y
dy
dt = �4x� y

(f)

dx
dt = y
dy
dt = 2x� y

(g)

dx
dt = 2x
dy
dt = 2y

(h)

dx
dt = �3x� 1

2y
dy
dt = 6x+ y

5. For the system of di↵erential equations

dx
dt = rx+ 2y
dy
dt = 3x+ ry

figure out all the possible types of equilibrium solutions for di↵erent values of r, where r is some real

number. Show all work to support your conclusions.

6. Denise claims that all solutions (except the equilibrium solution) to the system of di↵erential equa-

tions
dx
dt = ax+ by
dy
dt = cx+ dy

will spiral if (ad� bc) is negative. Do you are agree with Denise’s claim? If yes, justify your response.

If not, explain why not.
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7. Consider the following system:
dx
dt = px+ qy
dy
dt = cx+ dy

(a) Explain why if the eigenvalues are distinct real numbers, the general form of the solution can

be written as ✓
x(t)
y(t)

◆
= c1e

�1t�1 + c2e
�2t�2

where �1 and �2 are the eigenvectors associated with �1 and �2.

(b) Explain why if the eigenvalues are complex numbers of the form a± bi then the general solution

is of the form ✓
x(t)
y(t)

◆
= eatv

where v is a vector containing arbitrary constants c1 and c2 and other terms involving sin(t)
and cos(t).

(c) Complete the following table by reflecting on and organizing what you’ve figured out about the

phase portrait for systems of linear di↵erential equations based on knowing just the eigenvalues.

Eigenvalues Typical phase portrait Basic format of the general solution

two distinct positive

real numbers

one positive and one

negative real number

two distinct negative

real numbers

two identical (repeated)

positive real numbers

a complex conjugate pair

with negative real part

a complex conjugate pair

with positive real part

a complex conjugate pair

with no real part
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Second Order Linear Di↵erential Equations

A second order linear di↵erential equation has the form

P (t)
d2y

dt2
+Q(t)

dy

dt
+R(t)y = G(t)

where P , Q, R, and G are continuous functions. There are many applications for which this type of
di↵erential equation is a useful model. Your previous work with the spring mass problem was one such
example. Here are some other examples.

Glass Breaking: You probably have all seen in cartoons or on Mythbusters where a wineglass is broken
by singing a particular high-pitched note. The phenomenon that makes this possible is called resonance.
Resonance results from the fact that the crystalline structures of certain solids have natural frequencies
of vibration. An external force of the same frequency will “resonate” with the object and create a huge
increase in energy. For instance, if the frequency of a musical note matches the natural vibration of a
crystal wineglass, the glass will vibrate with increasing amplitude until it shatters. The following is one
model for understanding resonance:

d2x

dt2
+ k2x = cos(kt)

Tacoma Narrows Bridge: The Tacoma Narrows Bridge in Washington State was one of the largest
suspended bridges built at the time. The bridge connecting the Tacoma Narrows channel collapsed in a
dramatic way on Thursday November 7, 1940. Winds of 35-46 miles/hours produced an oscillation which
eventually broke the construction. The bridge began first to vibrate torsionally, giving it a twisting motion.
Later the vibrations entered a natural resonance (same term as in the glass breaking) with the bridge. Here
is a simplified second order di↵erential equation that models the situation of the Tacoma Bridge:

d2y

dt2
+ 4y = 2 sin(2.1t)

Sometimes resonance is a good thing! Violins, for instance, are designed so that their body resonates at
as many di↵erent frequencies as possible, which allows you to hear the vibrations of the strings!

There are many other situations that can be modeled with second order di↵erential equations, including
RLC circuits, pendulums, car springs bouncing, etc. In this section you will learn how to solve second
order linear di↵erential equations with constant coe�cients. That is, equations where P , Q, and R are
constant. If G is zero, then the equation is called homogeneous. When G is nonzero then the equation
is called nonhomogeneous. As you will discover in the problems that follow, the distinction between
homogeneous and non-homogeneous equations will be quite useful.
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Guess and Test

1. (a) Read the following equations with meaning, by completing the following sentence, “x(t) is a
function for which its second derivative ...” (try saying “itself” instead of “x”).

i.
d2x

dt2
= �x ii.

d2x

dt2
+ x = 0 iii.

d2x

dt2
+ 4x = 0 iv.

d2x

dt2
= x

(b) For each di↵erential equation above, based on your readings with meaning, find two di↵erent
solution functions.

2. Your task in this problem is to use the “guess and test” approach to find a solution to the linear
second order, homogeneous di↵erential equation

d2x

dt2
+ 10

dx

dt
+ 9x = 0

By now you know very well that solutions are functions. What is your best guess for a function
whose second derivative plus 10 times its first derivative plus 9 times the function itself sum to zero?
Explain briefly the rationale for your guess and then test it out to see if it works. If it doesn’t work
keep trying.

3. Determine if a constant multiple of your solution is also a solution.
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4. Try and find a di↵erent solution, one that is not a constant multiple of your solution to problem 2.

5. Determine the general solution to
d2x

dt2
+ 10

dx

dt
+ 9x = 0.
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6. Consider again the di↵erential equation
d2x

dt2
+ 10

dx

dt
+ 9x = 0.

By guessing x(t) = ert, show that this
guess yields a solution to the di↵eren-
tial equation precisely when r2+10r+
9 = 0.

Solve this quadratic equation to find
two di↵erent values of r.

State two di↵erent solutions for the
di↵erential equation, one for each
value of r.
Form the general solution by multiply-
ing your two solutions by constants c1
and c2, and adding the results.
Congratulate yourself :)

7. Find the general solution to the following di↵erential equation:
d2x

dt2
+

dx

dt
� 6x = 0.
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The Nonhomogeneous Case

8. In this next problem your task is to find a solution to the following nonhomogeneous version of
the di↵erential equation from the first problem:

d2x

dt2
+ 10

dx

dt
+ 9x = 18.

What is your best guess for a function whose second derivative plus 10 times its first derivative plus
9 times the function itself sum to 18? Test out your guess to see if it works. If it doesn’t work keep
trying.
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The solution you found in the previous problem is called the particular solution to the nonhomogeneous
di↵erential equation. To find the general solution to the nonhomogeneous di↵erential equation you simply
add the particular solution to the general solution to the corresponding homogeneous equation. This 3-
step strategy (1 - Find the general solution to the corresponding homogeneous equation; 2 - Find the
particular solution to the nonhomogeneous equation, 3 - Add the previous results) is called the Method
of Undetermined Coe�cients.

9. Write down the general solution to
d2x

dt2
+ 10

dx

dt
+ 9x = 18 and give a convincing argument for why

this sum is in fact a solution is the nonhomogeneous di↵erential equation.

10. Sean and Phil are trying to find the particular solution to
d2x

dt2
+10

dx

dt
+9x = 85 sin(2t). Sean guesses

x(t) = A sin(2t) for the particular solution and Phil guesses x(t) = B cos(2t).

(a) Do you think these are reasonable guesses? Explain why or why not.

(b) For each of their guesses, can you find a value of A or B such that their guess is a solution? If
yes, write down the general solution. If no, come up with a di↵erent guess for the particular
solution and show that your guess is correct.
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11. Write down the general solution to
d2x

dt2
+ 10

dx

dt
+ 9x = 85 sin(2t).

12. Find the general solution to
d2x

dt2
+ 10

dx

dt
+ 9x = 85 sin(2t)+18. Explain why you can do this by

combining results from the previous problems.

13. An aside on complex numbers:

(a) Show that x(s) = eis and x(s) = cos(s) + i sin(s) are both solutions to the di↵erential equation
dx/ds = ix with x(0) = 1. What does the uniqueness theorem imply about these two solutions?

(b) The above result is called Euler’s formula. Multiplying by e↵t and using s = �t, we can rewrite
the formula into the following form: e(↵+�i)t = e↵t(cos(�t)+ i sin(�t)). Use this to find a similar
formula for e(↵��i)t.
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(c) Suppose you have two functions:

A(t) = e↵t(cos(�t) + i sin(�t))

B(t) = e↵t(cos(�t)� i sin(�t))

Simplify the following expressions in (i) and (ii) then answer (iii) and (iv).

i. x1(t) =
A(t) +B(t)

2

ii. x2(t) = i
A(t)�B(t)

2

iii. What do you notice about your solutions in (i) and (ii), compared to A(t) and B(t)?

iv. If A(t) and B(t) were solutions to a di↵erential equation of the form

a
d2x

dt2
+ b

dx

dt
+ cx = 0,

would x1(t) and x2(t) be solutions too? How about c1x1(t)+ c2x2(t) for arbitrary constants
c1 and c2?
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14. Find the general solution to the homogeneous di↵erential equation

d2x

dt2
+ 25x = 0

You will find that your guess results in complex roots to the quadratic. Use the above results on
exponentiation of complex numbers to find the general solution to the di↵erential equation.

15. (a) Consider the nonhomogeneous di↵erential equation

d2x

dt2
+ 25x = 10 cos(5t)

Suppose you wish to find the particular solution to this di↵erential equation. Explain why a
guess of the form x(t) = A cos(5t) +B sin(5t) is doomed to fail.

(b) Nevertheless, explain why your particular solution must have terms that look like cos(5t) and
sin(5t).

(c) For an unknown di↵erentiable function f(t), write down the first and second derivatives of tf(t),
what do you notice?

(d) Explain why a guess of At cos(5t) is insu�cient to find the particular solution.
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(e) Use the guess x(t) = t(A cos(5t)+B sin(5t)) to find a particular solution to the above equation.

16. (a) Find the general solution to
d2x

dt2
+ 25x = 10 cos(5t).

(b) Find the specific solution for initial conditions x(0) = 0, x0(0) = 1.

Page 13.10



Unit 13: Second Order Linear DEs

Homework Set 13

1. When we are solving a nonhomogeneous second order linear di↵erential equation, the above task
sequence had you create a general strategy to first find the solution to the corresponding homogenous
equation. You may or may not have found that you always end up solving a quadratic equation to
find the coe�cients of the exponent variable. In other words, the equation looks like this.

k2 + bk + c = 0

This is called the characteristic equation for the homogeneous linear DE. Find the characteristic
equation and solve to find the general solution for the following homogeneous linear di↵erential
equations.

(a) y00 + y0 + 12y = 0

(b) y00 + y0 + y = 0

(c) y00 + 9y = 0

2. Find the solution to the following linear second order di↵erential equations.

(a) y00 � 4y0 = 0

(b) y00 � 4y0 = x

(c) y00 � 4y0 = x+ sin(x)

(d)
d2y

dx2
+ 4

dy

dx
+ 4y = 2x+ 3

(e) y00 � 5y0 + 4y = e5x

(f) y00 � 5y0 + 4y = e4x

3. Find the solution to the initial value problem

y00 + 2y0 + 2y = 0 where y(⇡/4) = 2 and y0(⇡/4) = �2.

4. Create a table that provides the guess you might make for the particular solution of a second order
DE when you are faced with di↵erent possible right hand sides of your DE. For example, if the right
hand side is general A cos(kt), what would you guess... etc.

5. In everyday life resonance can be a fairly common phenomenon although you may not realize it.
Resonance occurs when a system is forced at its natural frequency, leading to a build-up of the
amplitude of oscillation and energy. The e↵ect is familiar to most as the high pitched squeal over a PA
system caused by microphone feedback. Mathematically, resonance can be seen as a nonhomogeneous
second order di↵erential equation whose particular solution is of the same form as the complementary
function. To see how this happens, find the general solution to this di↵erential equation:

d2y

dt2
+ 4y = 3 cos(2t)
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6. In this question we will interpret the equation
d2y

dt2
+ 4y = 3 cos(2t) as an undamped spring-mass

system being periodically driven by the force F (t) = 3 cos(2t).

(a) Explain why one should expect the spring to eventually break.

(b) Explore the results of adding a small amount of friction to the system. (Hint : the new system

would be
d2y

dt2
+ b

dy

dt
+ 4y = 3 cos(2t), b > 0)

7. The Tacoma Narrows Bridge in Washington State was one of the largest suspended bridges built
at the time. The bridge connecting the Tacoma Narrows channel collapsed in a dramatic way on
Thursday November 7, 1940. Winds of 35-46 miles/hours produced an oscillation which eventually
broke the construction. The bridge began first to vibrate torsinonally, giving it a twisting motion.
Later the vibrations entered a natural resonance (same term as in the glass breaking) with the bridge.
Here is a simplified second order di↵erential equation that models the situation of the Tacoma Bridge:

d2y

dt2
+ 4y = 2 sin(2.1t)

Solve this di↵erential equation and interpret your solution.

8. Suppose you are solving a DE of the following form:

y00 + by0 + cy = A sin(mt)

Determine the parameters of m that would assure you that you can use a particular solution guess
of

yp = A sin(mt) +B cos(mt)

And not
yp = t(A sin(mt) +B cos(mt))

Explain your answer.

9. Use the Internet (or if you are feeling old school, a book) to learn about the technique of variation
of parameters, and use it to solve the following two di↵erential equations. In each case, compare
your solution with the one you would get through the method of undetermined coe�cients.

(a) y00 � y = e2t

(b) y00 + y = cos(t)
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In the Swing of Things

A pendulum is attached to a wall in such a way that it is free to rotate around in a complete circle. Without

provocation, Debra takes a baseball bat and hits it, giving it an initial velocity and setting it in motion.

1. If we call ✓ the angular position of the pendulum (where ✓ = 0 corresponds to when the pendulum

is hanging straight down) and we call the velocity of the pendulum v, what would angular position

versus velocity graphs look like for a variety of di↵erent initial velocities due to Debra’s hit? Provide

a brief description of the motion of the pendulum for your graphs.

2. How many equilibrium solutions are there, where are they, and how would you classify them?
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Applying Newton’s 2nd Law of motion (where ✓ = 0 corresponds to the downward vertical position and

counterclockwise corresponds to positive angles ✓) yields the di↵erential equation

d2✓

dt2
+

b

m

d✓

dt
+

g

l
sin(✓) = 0

where b is the coe�cient of damping, m is the mass of the pendulum, g is the gravity constant, and l is
the length of the pendulum (See homework problem 5 for a derivation of this equation). Estimating the

parameter values for the pendulum that Debra hits and changing this second order di↵erential equation to

a system of di↵erential equations yields

d✓

dt
= v

dv

dt
= �0.2v � sin(✓)

3. How many equilibrium solutions does this system of di↵erential equations have, where are they, and

based on the context what types of equilibrium solutions would you expect them to be? How does

this connect with your answer to 2?

4. You might recall that if ✓ is small, sin(✓) ⇡ ✓. Explain why this is true and then use this fact to

approximate the above system with a linear system and classify the equilibrium solution at the origin.

5. Classify the equilibrium point at ✓ = ⇡.

6. Use the GeoGebra applet, https://ggbm.at/SpfDSc5Q, to approximate the range of initial velocities

with zero initial displacement that will result in the pendulum making exactly one complete rotation

before eventually coming to rest.
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Linearization and Linear Stability Analysis

In the next several questions we will develop tools to analyze equilibria of nonlinear systems. To do this,

we will first build our intuition by studying first order nonlinear equations.

7. Recall from Calculus that the linearization, L(h), of a function around a point of interest, x⇤, is
given by L(h) ⌘ f(x⇤) + hf 0

(x⇤). The key feature of the linearization is that, when x ⇡ x⇤, that is,
x = x⇤ + h for h ⇡ 0, then f(x) ⇡ L(h).

Find the linearization of f(x) = 1�x2

around x⇤ = 1.

If x ⇡ 1, x can be written as x = 1+h
where h ⇡ 0. Suppose x follows the

di↵erential equation
dx
dt = 1� x2. Use

the linearization above to write down

a linear di↵erential equation for
dh
dt .

According to the above di↵erential

equation, what is the long term be-

havior of h?
If x(0) ⇡ 1, what does the long term

behavior of h tell you about the long

term behavior of x?

8. (a) Consider again
dx

dt
= 1� x2, but this time with x(0) ⇡ �1. Find a new linearization and use it

to make a long term prediction about x.
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(b) Why was it necessary to construct a new linearization to study x(0) ⇡ �1?

(c) Using linearization to determine the stability of a critical point is called “linear stability analy-

sis.” Use a phase line to corroborate your linear stability analysis.

(d) For an arbitrary system,
dx

dt
= f(x) with an equilibrium point at x = x⇤, describe how you can

use linear stability analysis to determine the stability of the equilibrium point.

9. Consider the following system:

dx

dt
= 1� x2

dy

dt
= �3x� 3y

(a) Algebraically find the equilibrium solutions.

(b) Tanesha used the GeoGebra Vector field applet, https://ggbm.at/kkNXUVds, to plot the vector

field associated with the di↵erential equation. Based on this vector field, how would you classify

the equilibria?
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We can also perform linear stability analysis on a system of two or more variables, such as the one in the

previous problem. Consider a function f(x, y), then Taylor’s theorem states that, if (x, y) ⇡ (x⇤, y⇤), that
is, if (x, y) = (x⇤ + h1, y⇤ + h2) where h1 ⇡ 0 and h2 ⇡ 0, then

f(x, y) ⇡ L(h1, h2) = f(x⇤, y⇤) + h1fx(x
⇤, y⇤) + h2fy(x

⇤, y⇤)

where fx and fy are the partial derivatives of f with respect to x and y, respectively.

L(h1, h2) is called the linearization of f(x, y) around (x⇤, y⇤).

10. Consider the system of di↵erential equations:

dx

dt
= 1� x2

dy

dt
= �3x� 3y

Let’s first study the equilibrium at (1,-1).

If the system had x(0) ⇡ 1 and y(0) ⇡
�1, we could write x = 1 + h1 and

y = �1 + h2, with h1 ⇡ 0 and h2 ⇡ 0.

Use the linearization of the original

system of equations around (1,�1) to

write down a system of di↵erential

equations for h1 and h2

What are the long term behaviors of

h1 and h2?

What can you conclude about the long

term behaviors of x and y?

Classify the equilibrium point (1,�1),

according to your linear stability anal-

ysis.
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11. (a) Consider again

dx

dt
= 1� x2

dy

dt
= �3x� 3y

Use linear stability analysis to classify the equilibrium point at (�1, 1).

(b) Combine your results from question 10 and 11a, to sketch a possible phase plane for the system

of di↵erential equations. Does an analysis of the system using nullclines corroborate your linear

stability analysis?
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12. For a system of di↵erential equations

dx

dt
= f(x, y)

dy

dt
= g(x, y)

with an equilibrium point at (x⇤, y⇤), the matrix

J =


fx(x⇤, y⇤) fy(x⇤, y⇤)
gx(x⇤, y⇤) gy(x⇤, y⇤)

�

is called the Jacobian matrix. Explain how you can use the Jacobian matrix to determine the

behavior of a the system of di↵erential equations near (x⇤, y⇤).

13. Use linear stability analysis to classify the critical points you found in the pendulum system.

d✓

dt
= v

dv

dt
= �0.2v � sin(✓)
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Homework Set 14

1. Bees and Flowers II. In an earlier problem, we studied systems of rate of change equations designed

to inform us about the future populations for two species that are either competitive (that is both

species are harmed by interaction) or cooperative (that is both species benefit from interaction).

(A) (B)

dx

dt
= �5x+ 2xy

dy

dt
= �4y + 3xy

dx

dt
= 3x(1� x

3
)� 1

10
xy

dy

dt
= 2y(1� y

10
)� 1

5
xy

(a) Explain why the second system of rate of change equations describes a situation where the two

species are competitive.

(b) Verify that the equilibrium solutions for system (B) are (0,0), (3, 0), (0, 10), and (
20
9 ,

70
9 ).

(c) Determine the linearized system of di↵erential equations about each equilibrium solution and

use the information you gain about the solutions near each of these equilibrium solutions to

sketch the phase portrait.

2. Without using technology, use the tools of linearization and nullclines to sketch the phase portrait

for the nonlinear system:

dx

dt
= cos(y)

dy

dt
= y � x

Be as accurate as possible and show all supporting work.

3. When the John Hancock Building in Boston, MA was first built it tended to sway back and forth

so much so that people in the top floors experienced motion sickness. Similar to the spring mass

system, we can model the back and forth motion of the building by adding a gravity term to the

spring mass model.

The following system of rate of change equations is a model for helping us make predictions about

the motion of a skyscraper swaying in the wind. In this simplified system of rate of change equations,

x is the amount of displacement of the building from the vertical position at any time t and y is the

horizontal velocity of the building at any time t. Use what you know about linear stability analysis

to analyze the behavior of the systems at the critical points and compare to your earlier work. (You

might want to use a GeoGebra vector field applet, https://ggbm.at/kkNXUVds, to help understand

it first).

dx

dt
= y

dy

dt
= �x� y + x3

Page 14.8

https://ggbm.at/kkNXUVds


Unit 14: Nonlinear Systems

4. Consider the phase plane below for the damped pendulum:

(a) Shade in the region(s) corresponding to initial conditions that will make one full revolution

before coming to a stop.

(b) Use a di↵erent shading to show the region(s) corresponding to initial conditions that will make

two full revolutions before coming to a stop.
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Unit 14: Nonlinear Systems

5. Consider the diagram below for the pendulum:

(a) The force, due to gravity, on the bob of the pendulum is given by �mg. Explain why the

proportion of that gravitational force, in the direction tangent to the path of the pendulum’s

bob, is given by F = �mg sin(✓).

(b) In the diagram above, explain why the length of the dotted arc is given by s = l✓, when ✓ is

measured in radians.

(c) The frictional force (due to friction at the fixed point of the pendulum, or due to air resistance,

or a combination of these two) opposes the motion of the pendulum. Carefully explain why this

force can be represented as F = �b
ds

dt
= �bl

d✓

dt
.

(d) Newton’s law states that force is given by mass times acceleration. If m is the mass of the

pendulum bob, explain why F = m
d2s

dt2
= ml

d2✓

dt2
.

(e) Explain how the previous parts of this question can be combined to arrive at a di↵erential

equation:

ml
d2✓

dt2
= �bl

d✓

dt
�mg sin(✓)

(f) By defining v =
d✓

dt
, develop a pair of first order di↵erential equations for the (✓, v) system.
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Glossary

Glossary for First Order Linear Di↵erential Equations

Analytic approach: In this course, use have two analytic approaches separation of variables and the

technique for first order linear di↵erential equations. These approaches provide either general

or particular solutions in algebraic or analytic form.

Autonomous di↵erential equation: A di↵erential equation where the derivative is dependent only on

the dependent variable. For example
dy
dt = 2y� 3 is autonomous, but

dy
dt = 2t� 3 is not autonomous.

Bifurcation diagram: A plot of equilibrium solutions versus a parameter. Additionally, one can show

phase lines on the graph which show whether equilibrium solutions are stable (attractor), unstable

(repeller), or semi-stable (node).

Bifurcation value: A value of the parameter for which there is a change in the number or type of

equilibrium solutions.

Di↵erential equation: A di↵erential equation is also known as a rate of change equation. An equation

for an unknown function in terms of its derivative. Suppose y = y(t) is some unknown function, then

a di↵erential equation, or rate of change equation, would express the rate of change,
dy
dt , in terms

of y and/or t. First order di↵erential equation contains only the first derivative. Second order
di↵erential equations contains derivatives up to the second derivative. An ordinary di↵erential
equation (ODE) is a di↵erential equation whose derivatives pertain to only one variable, typically

derivatives with respect to time. A partial di↵erential equation (PDE) is a di↵erential equation

whose derivatives pertain to multiple variables.

Equilibrium solution: A constant function that satisfies a given di↵erential equation. There are three

types of equilibrium solutions for first order di↵erential equations: attractors (stable), repellers (un-

stable), and nodes (semi-stable).

Euler’s method: Informally referred to as the “tip to tail” method; this is a numerical method to find

approximate solutions to a given di↵erential equation.

Exact solution: A function that satisfies a given di↵erential equation. That is, when the function is

inserted into the di↵erential equation a true statement results.

Explicit solution: The general solution has been written so that it is in the form y(t) = e2t. Contrast

this with implicit solution.

First order linear di↵erential equation: A di↵erential equation that can be written in the form
dy
dt +

g(t)y = r(t), where g(t) and r(t) are both continuous functions. This type of di↵erential equation is

solved using the analytic technique of reverse product rule.

General solution: An algebraic (sometimes referred to as analytic) representation of the family of func-

tions that solve a given di↵erential equation.

Implicit solution: The general solution has been left in a form that has not been (or cannot be) alge-

braically solved. For example, y(t)5 + y(t) = e2t.

Initial condition or initial value: A specific point through which the solution to a di↵erential equation

will pass. Usually expressed as yt0 = y0. For example, y(0) = 2 (or y(2) = 6) could be an initial

condition that is then used to determine the particular solution from the general solution.
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Glossary

Initial value problem (IVP): A di↵erential equation together with an initial condition (initial value)

is called an Initial Value Problem (IVP).

Integrating factor: See reverse product rule.

Numerical approach: Provides numerical approximations to an initial value problem. One such method

is Euler’s method. Other methods include the Improved Euler’s method and the Runge-Kutta
method.

Particular solution: An algebraic (or analytic) representation of a specific function that solves the dif-

ferential equation and contains a specified point, usually called the initial value. A di↵erential

equation together with an initial condition is referred to as an initial value problem.

Qualitative / graphical approach An approach to solving a di↵erential equation that considers slopes

and how the solution follows the slopes in a field.

Reverse product rule: A technique for solving a first order linear di↵erential equation by intro-

ducing an unknown function u to help ?undo? the product rule. u is sometimes called an integrating
factor.

Runge-Kutta (RK4) method: A fourth order method used in solving di↵erential equations numerically.

Contrast with Euler’s method which is first order.

Separable di↵erential equation: Di↵erential equation that can be written in the form
dy
dx = f(y)g(x)

and, when possible, solved using the analytic technique of separation of variables.

Separation of variables: An analytic technique to solve a di↵erential equation of the form
dy
dx = f(y)g(x)

by separating the variables (i.e., by rewriting it as
dy
f(y) = g(x)dx) and integrating both sides if

possible.

Slope field: A graphical representation of the slopes at many di↵erent points in a coordinate plane where

each slope is determined by the derivative (rate of change) at any point in the plane. Slope fields

can be used to sketch in graphs of solution functions. A curve that follows the slopes is the graphical

analogue of inserting a function into the di↵erential equation with the result giving a true statement.

Uniqueness theorem: Informally, the terms “unique” or “uniqueness” refers to whether or not two

solution functions ever touch or cross each other. Refer to page 5.4 of the materials for the formal

theorem.
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Glossary for Systems, Second Order, and Nonlinear DEs

Characteristic equation: A polynomial equation corresponding to a second order linear di↵erential

equation that is used to help find solutions.

Damping, Overdamped, Undamped: Damping is the presence of a friction-like force in the system.

Undamped is the lack of friction-like in the system. A system is called overdamped if the friction-like

parameter exceeds a certain value determined by other parameters in the system.

Dependent (pertaining to linear algebraic equations): A homogeneous system of two equations is

dependent when it has infinitely many solutions.

Eigensolution: A straight line solution formed from an eigenvalue, eigenvector pair.

Eigenvalue: The value of the exponent associated with any straight line solution to a system of di↵erential

equations.

Homogeneous di↵erential equation: The following second order di↵erential equation, P (t)d
2y
dt2 +Q(t)dydt+

R(t)y = G(t), is homogenous when G(t) = 0. The same holds true for higher order di↵erential equa-

tions.

Isocline: An isocline is a set of points in the phase plane such that the slope of vectors is constant.

Geometrically, these are the points where the vectors all have the same slope. Algebraically, we find

isoclines by solving
dy
dx = c.

Jacobian matrix: A matrix that consists of all the first order partial derivatives of the di↵erential equa-

tions in a system. When these partial derivatives are evaluated at a equilibrium solution, the Jacobian

matrix linearizes a nonlinear system.

Linear system of di↵erential equations: A system in which the dependent variables appear in linear

combinations, that is, they may be multiplied only by scalar quantities and combined only through

addition and subtraction. For example, a two dimensional first order linear system of di↵erential

equations can be written as follows, where a, b, c, and d are real numbers:

dx

dt
= ax+ by

dy

dt
= cx+ dy

Linearization: The linearization, L(h), of a function around a point of interest, x⇤, is given by L(h) ⌘
f(x⇤) + hf 0

(x⇤). The key feature of the linearization is that, when x ⇡ x⇤, that is, x = x⇤ + h for

h ⇡ 0, then f(x) ⇡ L(h).

Method of undetermined coe�cients: This is a 3-step strategy to solve second order di↵erential equa-

tions (1 - Find the general solution to the corresponding homogeneous equation; 2 - Find the particular

solution to the nonhomogeneous equation, 3 - Add the previous results).

Nonhomogenous di↵erential equation: A nonhomogeneous second order linear di↵erential equation

with constant coe�cients has the form y00 + py0 + q = g(t), where g(t) is nonzero. More generally,

P (t)d
2y
dt2 +Q(t)dydt +R(t)y = G(t) is a second order linear di↵erential equation, where G(t) is not zero.

The same holds true for higher order di↵erential equations.
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Nullcline: The x-nullcline is a set of points in the phase plane such that
dx
dt = 0. Geometrically, these

are the points where the vectors point either straight up or straight down. Algebraically, we find the

x-nullcline by solving
dx
dt = 0. The y-nullcline is a set of points in the phase plane so that

dy
dt = 0.

Geometrically, these are the points where the vectors are horizontal, pointing either to the left or to

the right. Algebraically, we find the y-nullcline by solving
dy
dt = 0. The x-nullcline and y-nullcline are

specific isoclines.

Phase plane: A plane where solutions and/or vectors for as system of di↵erential equations can be rep-

resented in two dimensions. You often will see vectors and/or solutions represented.

Phase portrait: Projection of the solution curves of a system like:

x0 = f(x, y)

y0 = g(x, y)

into the x � y (phase) plane. Usually the phase portrait include several representative solutions to

help represent all the solutions.

Vector field: A vector field shows a selection of vectors with the correct slope with normalized length in

a phase plane.
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