Name _

Instructions: Show all work. Answers without work required to obtain the solution will not receive full credit. Some questions may contain multiple parts: be sure to answer all of them. Give exact answers unless specifically asked to estimate.

- 1. Estimate the solution of the ODE $\frac{dy}{dx} = y xy$, y(0) = 2 using $\Delta t = 0.1$ using two complete steps of Runge-Kutta.
- 2. Verify that the equation $(1 + ye^{xy})dx + (2y + xe^{xy})dy = 0$ is exact. Then find the general solution.
- 3. Use the method of integrating factors to find the particular solution for $xy' = 2y + x^3 \cos x$, $y(\pi) = 0$.
- 4. Rewrite the equation $y' + \frac{6}{r}y = 3y^{4/3}$ as a linear equation (Hint: it is Bernoulli).
- 5. Solve $y' + 2xy^2 = 0$ by separation of variables.
- 6. Classify each differential equation as i) linear or nonlinear, ii) state its order. a. $yy' = x(y^2 + 1)$

b.
$$\frac{d^4y}{dx^4} = y\cos x$$

c.
$$2\sqrt{x}\frac{du}{dx} + \left(\frac{du}{dx}\right)^2 = 2xu$$

d.
$$y^{(5)} + y'' = e^y \tan x$$

- 7. Solve the second-order ODEs for the general solution.
 - a. y'' 2y' + 2y = 0

b.
$$2y'' - y' - 2y = 0$$

8. The table below gives the solution to the second order constant coefficient homogeneous equation, and the forcing function F(x) or F(t). Determine the Ansatz (particular solution y_p) for the method of undetermined coefficients in each case.

	y_1	<i>y</i> ₂	F(x) or $F(t)$	Ansatz
a.	e^{-4x}	$e^{0.1x}$	2 sinh 3 <i>x</i>	
b.	$e^x \cos x$	$e^x \sin x$	$e^x \sin x$	
c.	e ^x	$e^{-x/3}$	$e^{x} + 7x^{3}$	

- 9. Use the table of Laplace transforms to find Laplace transforms or inverse Laplace transforms as indicated. (4 points each)
 - a. $\mathcal{L}\{(1+2t)^2\}$ b. $\mathcal{L}\{e^{-2t}\sin 3t\}$
 - c. $\mathscr{L}\left\{\frac{1}{2}\int_0^t (t-\tau)^3 \sin 2\tau \, d\tau\right\}$
 - d. $\mathscr{L}^{-1}\left\{\frac{1}{2}-\frac{2}{s^5}\right\}$
 - e. $\mathscr{L}^{-1}\left\{\frac{9-17s}{s^2+81}\right\}$
 - f. $\mathscr{L}^{-1}\left\{\frac{1}{(s-3)(s^2+4)(s^2-1)}\right\}$

g.
$$\mathscr{L}^{-1}\left\{\frac{e^{-\pi}}{s^2+1}\right\}$$

- 10. Use Laplace transforms to solve the IVP $y'' + 4y' 12y = e^{-2t}$, y(0) = 0, y'(0) = 1.
- 11. We want to approximate the solution to $y' = x + \sqrt[3]{y}$ at the point x = 3 in 10 steps. Given that y(0) = 1, compute the first 3 steps of the approximation with Euler's method.
- 12. A 1000L tank initially contains only pure water. A hose begins adding to the tank at a rate of 5L/min with a concentration of iodine salt of 40g/L. The well-mixed solution flows out of the tank at a rate of 6L/min. Find an equation that models the amount of iodine in the tank after time t. Find the maximum amount of iodine in the tank (if one exists).
- 13. Determine if the set of functions forms a fundamental set.
 a. e^t sin t, e^t cos t
 - b. $\cosh t$, $\sinh t$
- 14. Use reduction of order to find the second solution to the equation (x 1)y'' xy' + y = 0, $y_1 = e^x$.
- 15. Find the particular solution $y^{''} + 2y^{'} + 5y = 3 \sin 2t$, y(0) = 1, y'(0) = 3 using: a. The method of undetermined coefficients
 - b. Variation of parameters
- 16. A spring with a 4-kg mass has natural length 1 m and is maintained stretched to a length of 1.3 m by a force of 24.3 N. If the spring is compressed to a length of 0.8 m and then released with zero velocity, set up the second order linear IVP needed to solve the system, then solve it. You may round solutions to 4 decimal places.
- 17. Use the definition of the Laplace transform $\mathscr{L}{f(t)} = \int_0^\infty e^{-st} f(t) dt$ to find $\mathscr{L}{1 + \cosh 5t}$.

- 18. Use the table of Laplace transforms to find Laplace transforms or inverse Laplace transforms as indicated.
 - a. $\mathscr{L}\{(1+t)^2\}$
 - b. $\mathcal{L}{te^t}$
 - c. $\mathscr{L}\left\{e^{-2t}\sin 3\pi t\right\}$
 - d. $\mathscr{L}^{-1}\left\{\frac{1}{2}-\frac{2}{s^5}\right\}$
 - e. $\mathscr{L}^{-1}\left\{\frac{9-17s}{s^2+81}\right\}$
 - f. $\mathscr{L}^{-1}\left\{\frac{1}{s(s^2+4)}\right\}$

g.
$$\mathscr{L}^{-1}\left\{\frac{1}{s^2(s^2-1)}\right\}$$

- 19. Use Laplace transforms to solve the IVP $y'' + 4y' + 8y = e^{-t}$, y(0) = 0, y'(0) = 1.
- 20. Use the definition of the Laplace transform $\mathscr{L}{f(t)} = \int_0^\infty e^{-st} f(t) dt$ to find a formula for $\mathscr{L}{f(t)}$.

a.
$$f(t) = t^2$$

b. $f(t) = \cosh 2t$
c. $f(t) = \begin{cases} 1, & 0 \le t \le 2\\ 2t - 1, & 2 > t \end{cases}$

- 21. A metal pan is removed from an oven at a temperature of 425-degrees. After 2 minutes, the pan temperature has fallen to 350-degrees.
 - a. If the room temperature is 77-degrees, write a differential equation that models the situation, and then solve for the equation at time *t*.
 - b. How long will it take for the temperature to fall to 120-degrees?