
EAS 596, Fall 2019, Homework 1
Due Wednesday 9/4, 4 PM, Box outside Jarvis 326

Work all problems. Show all work, including any M-files you have written or adapted. Make sure
your work is clear and readable - if the TA cannot read what you’ve written, that work will not be
graded. All electronic work (m-files, etc.) must be submitted through UBLearns by the due time
shown above. Electronic files must obey the following naming convention: ubitname hw1 p1.m,
replacing ubitname with your ubitname. Any handwritten work may be submitted in class. Each
problem will be graded according to the following scheme:

• 4 Points: Solutions are complete and correct. Code runs with no need for modification.

• 3 Points: One mistake in the code and it is easily found. Code runs after the modification.

• 2 Points: Two to three minor mistakes in the code, which are easily found. Code runs after
the modification.

• 1 Points: Many mistakes in the code. No attempt will be made to modify it to run.

• 0 Points: Code has major conceptual issues.

Problem 1:
In this problem you will be constructing a simple root-finding function using the bisection method.
Let f(x) be a continuous function defined over the range [a, b] such that f(a)× f(b) < 0. The fact
that f(a)×f(b) < 0 indicates that the sign of f(a) and f(b) differs and therefore f(y) = 0 for some
value y ∈ [a, b]. The bisection method is an iterative method:

1. Compute the mid-point between [a, b]: c = (a+ b)/2.

2. If f(a) × f(c) < 0 then replace the value b by c. Thus the new range is [a, c].
If f(b)× f(c) < 0 replace a by c. Thus the new range is [c, b].

3. Repeat until b− a < ε, where ε is the tolerance.

4. Return a root of x0 = (b+ a)/2.

Write a MATLAB function with a call of [root, nIters] = ubitname hw1 p1(@(x)(f), [a

b]), where f is the function to find the root of and [a b] provides the initial range. The code
@(x)(f) creates an anonymous function of a single variable. For example, to find the root of
sin(4x) you would use @(x)(sin(4*x)). When completed this function returns both the root and
the number of iterations needed.

This function should do the following:

• Check if f(a)× f(b) < 0. If it does not, return an error using the error function.

• Iterate until b− a < ε. Use ε = 10−6.

• If the number of iterations exceeds 1000, return an error using the error function.

• If successful return both the root and the number of iterations needed for convergence.



1. Test your function by computing the root of sin(x) using an initial range of [2, 4].

2. In the range [2, 10] there are three roots of sin(x). Using that range, use your function to
compute the root. Will your function ever be able to find the other two roots? Explain your
answer.

Problem 2:
This problem explores the trade-off between the truncation error in the finite difference approx-
imation of the derivative and floating point truncation error incurred when using finite precision
arithmetic. Using a simple Taylor series, it is easy to construct a forward difference approximation
of the derivative:

f ′(x) =
f(x+ h)− f(x)

h
+O(h)

where h is some defined step-size.

1. Write a MATLAB script that computes the forward finite difference approximation of the
derivative of sin(x) for x = π/3. Use step sizes, h, ranging from 10−1 to 10−16. You may
find the logspace command useful. Plot the error, using a log-log scale, between your
approximation and the exact derivative for each of your step sizes. Make sure to upload your
script to UBLearns and name it ubitname hw1 p2.m and properly label the plot.

2. Based on your plot, what is the best step size to use for the finite difference step size?

3. Explain the behavior you see in the graph.


