10/28/2021

Projections, Best Approximation Theorem, Regression

$$y = \begin{bmatrix} -1\\4\\3 \end{bmatrix}, u_1 = \begin{bmatrix} 1\\1\\0 \end{bmatrix}, u_2 = \begin{bmatrix} -1\\1\\0 \end{bmatrix}$$

H is a subspace equal to $span\{u_1, u_2\}$. Project y onto the subspace H.

$$proj_{H}y = proj_{u_{1}}y + proj_{u_{2}}y = \frac{y \cdot u_{1}}{u_{1} \cdot u_{1}}u_{1} + \frac{y \cdot u_{2}}{u_{2} \cdot u_{2}}u_{2} = \frac{(-1)(1) + (4)(1) + 3(0)}{1^{2} + 1^{2} + 0} \begin{bmatrix} 1\\1\\0 \end{bmatrix} + \frac{(-1)(-1) + 4(1) + 3(0)}{(-1)^{2} + 1^{2} + 0} \begin{bmatrix} -1\\1\\0 \end{bmatrix} = \frac{3}{2} \begin{bmatrix} 1\\1\\0 \end{bmatrix} + \frac{5}{2} \begin{bmatrix} -1\\1\\0 \end{bmatrix} = \begin{bmatrix} -1\\4\\0 \end{bmatrix} = y_{\parallel}$$

Orthogonal component (perpendicular distance from the point to the plane (subspace))

	[-1]		[-1]		[0]	
$y_{\perp} = y - y_{\parallel} =$	4	—	4	=	0	
	3		0		3	

The Best Approximation Theorem

Let W be a subspace of \mathbb{R}^n , and let y be any vector in \mathbb{R}^n , and let y_{\parallel} be the orthogonal project of y onto W. Then y_{\parallel} is the closest point in W to y, in the sense that $||y - y_{\parallel}|| < ||y - v||$ where v is any other point in W.

Basis for R^2 is $u_1 = \begin{bmatrix} 2 \\ -3 \end{bmatrix}$, $u_2 = \begin{bmatrix} 6 \\ 4 \end{bmatrix}$. Write $x = \begin{bmatrix} 9 \\ -7 \end{bmatrix}$ as a vector in this basis.

The coefficients for the basis vectors are the projection coefficients onto that basis vector.

$$c_1 \begin{bmatrix} 2\\-3 \end{bmatrix} + c_2 \begin{bmatrix} 6\\4 \end{bmatrix} = \begin{bmatrix} 9\\-7 \end{bmatrix}$$

$$c_{1} = \frac{x \cdot u_{1}}{u_{1} \cdot u_{1}}, c_{2} = \frac{x \cdot u_{2}}{u_{2} \cdot u_{2}}$$

$$c_{1} = \frac{2(9) + (-3)(-7)}{2^{2} + (-3)^{2}} = \frac{18 + 21}{4 + 9} = \frac{39}{13} = 3$$

$$c_{2} = \frac{(9(6) + (-7)(4))}{6^{2} + 4^{2}} = \frac{54 - 28}{36 + 16} = \frac{26}{52} = \frac{1}{2}$$

$$[x]_{B} = \begin{bmatrix} 3\\ 1\\ 2 \end{bmatrix}$$

$$P_{B}[x]_{B} = x$$

$$\begin{bmatrix} 2 & 6\\ -3 & 4 \end{bmatrix} \begin{bmatrix} c_{1}\\ c_{2} \end{bmatrix} = \begin{bmatrix} 9\\ -7 \end{bmatrix}$$

$$P_{B}^{-1} = \frac{1}{8+18} \begin{bmatrix} 4 & -6\\ 3 & 2 \end{bmatrix} = \frac{1}{26} \begin{bmatrix} 4 & -6\\ 3 & 2 \end{bmatrix}$$

$$\begin{bmatrix} c_{1}\\ c_{2} \end{bmatrix} = \frac{1}{26} \begin{bmatrix} 4 & -6\\ 3 & 2 \end{bmatrix} \begin{bmatrix} 9\\ -7 \end{bmatrix} = \frac{1}{26} \begin{bmatrix} 36+42\\ 27-14 \end{bmatrix} = \frac{1}{26} \begin{bmatrix} 78\\ 13 \end{bmatrix} = \begin{bmatrix} 3\\ 1\\ \frac{1}{2} \end{bmatrix}$$

Least Squares Solutions

If A is an mxn matrix and b is in \mathbb{R}^m , a least-squares solution of Ax=b is a vector x_{\parallel} in \mathbb{R}^n such that $\|b - Ax_{\parallel}\| < \|b - Ax\|$ for any x in \mathbb{R}^n .

Typically, we use this theorem when the system is overdetermined: more equations than variables.

Ax = b

Multiplying both sides of the equation by the transpose serves to project A (and b) onto a subspace.

$$A^T A x = A^T b$$

 $A^{T}A$ is now nxn. And $A^{T}b$ is nx1. If we solve for x in this equation, then we'll get the best approximation to b in the original system that we can get.

This equation is called the Normal Equation.

To solve this exactly, $A^T A$ must be invertible. For this to be true, the original columns of A must be independent.

$$A = \begin{bmatrix} 4 & 0 \\ 0 & 2 \\ 1 & 2 \end{bmatrix}, b = \begin{bmatrix} 2 \\ 0 \\ 11 \end{bmatrix}$$

Ax = b, or get the best approximation

Use the normal equation to estimate the best x to approximate b.

$$A^T A x = A^T b$$

$$\begin{bmatrix} 4 & 0 & 1 \\ 0 & 2 & 2 \end{bmatrix} \begin{bmatrix} 4 & 0 \\ 0 & 2 \\ 1 & 2 \end{bmatrix} x = \begin{bmatrix} 4 & 0 & 1 \\ 0 & 2 & 2 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \\ 11 \end{bmatrix}$$

$$\begin{bmatrix} 17 & 2\\ 2 & 8 \end{bmatrix} x = \begin{bmatrix} 19\\ 22 \end{bmatrix}$$
$$x = \frac{1}{136 - 4} \begin{bmatrix} 8 & -2\\ -2 & 17 \end{bmatrix} \begin{bmatrix} 19\\ 22 \end{bmatrix} = \begin{bmatrix} \frac{9}{11}\\ \frac{28}{11} \end{bmatrix} \approx \begin{bmatrix} 0.818\\ 2.545 \end{bmatrix}$$
$$\begin{bmatrix} 4 & 0\\ 0 & 2\\ 1 & 2 \end{bmatrix} \begin{bmatrix} \frac{9}{11}\\ \frac{28}{11} \end{bmatrix} = \begin{bmatrix} \frac{36}{11} \approx 3.27\\ \frac{56}{11} \approx 5.09\\ \frac{65}{11} \approx 5.91 \end{bmatrix} \approx \begin{bmatrix} 2\\ 0\\ 11 \end{bmatrix}$$

Find the best fit (least-squares) regression line to the equation $\beta_0 + \beta_1 x = y$ for the points: {(1,0), (2,1), (4,2), (5,3)}

$$y = -0.6 + 0.7x$$
$$y = \beta_0 + \beta_1 x + \beta_2 x^2$$