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Diagonalization, Complex Eigenvalues, Applications 
 
Diagonal matrices are matrices with non-zero components only on the diagonal. 

𝐷 = [
𝑎 0 0
0 𝑏 0
0 0 𝑐

] 

 
For a diagonal matrix, the standard basis vectors are the eigenvectors, and the diagonal elements are 
the corresponding eigenvalues. 
 
We want to be able to find a similarity transformation that converts a general matrix into a diagonal 
one. 
 
If an nxn matrix is diagonalizable, then it will have n linearly independent eigenvectors. 
 
If it is diagonalizable, then 𝐴 = 𝑃𝐷𝑃−1, where P is the similarity transformation, and P is the matrix of 
the (independent) eigenvectors of A. And the diagonal entries of D will be the eigenvalues of A. 
 

𝐴 = [
7 2

−4 1
] 

 
(7 − 𝜆)(1 − 𝜆) + 8 = 0 

 
𝜆2 − 8𝜆 + 7 + 8 = 𝜆2 − 8𝜆 + 15 = 0 

(𝜆 − 3)(𝜆 − 5) = 0 
𝜆 = 3,5 

 

𝐷 = [
3 0
0 5

] 

 
𝜆1 = 3 

[
7 − 3 2
−4 1 − 3

] = [
4 2

−4 −2
] 

 
4𝑥1 + 2𝑥2 = 0 

𝑥1 = −
1

2
𝑥2 

𝑥2 = 𝑥2 
 

𝑣 = [−
1

2
1

] , 𝑣1 = [
−1
2

] 

 
𝜆2 = 5 

 

[
7 − 5 2
−4 1 − 5

] = [
2 2

−4 −4
] 

 



2𝑥1 + 2𝑥2 = 0 
𝑥1 = −𝑥2 
𝑥2 = 𝑥2 

 

𝑣2 = [
−1
1

] 

 

𝑃 = [
−1 −1
2 1

] , 𝑃−1 = [
1 1

−2 −1
] 

 
𝐴 =  𝑃𝐷𝑃−1 

[
7 2

−4 1
] = [

−1 −1
2 1

] [
3 0
0 5

] [
1 1

−2 −1
] 

 
What is 𝐴4? 
 

𝐴 = 𝑃𝐷𝑃−1 
 

𝐴4 = 𝑃𝐷(𝑃−1𝑃)𝐷(𝑃−1𝑃)𝐷(𝑃−1𝑃)𝐷𝑃−1 
= 𝑃𝐷4𝑃−1 

[
−1 −1
2 1

] [3
4 0
0 54] [

1 1
−2 −1

] = [
1169 544

−1088 −463
] 

 
How do we know if a matrix has n independent eigenvectors (to be diagonalizable)? 
 
A matrix is diagonalizable if there are n distinct eigenvalues. (Because every vector from a eigenvalue is 
independent of vectors for different eigenvalues.) 
 
Repeated eigenvalues MAY produce more than one independent eigenvector (eigenspace=subspace 
defined by the eigenvectors for a particular eigenvalue), the eigenvalue might have the same dimension 
as the number of repetitions of the factor in the characteristic equation or it might not. There is no way 
to know without looking for the nullspace. It might produce fewer vectors. 
 
You are guaranteed only one vector for each eigenvalue. 
 
3x3 matrix, with two eigenvalues. Each eigenspace is one-dimensional. Is this matrix diagonalizable? 
No. 
 
3x3 matrix with two eigenvalues, and one eigenspace is one-dimensional and one is two-dimensional. Is 
this matrix diagonalizable? Yes. 
 
Consider 𝜆(𝜆 − 2)2 = 0 is the characteristic equation. 
 
Complex Eigenvalues 
 

𝐴 = [
1 −2
1 3

] 

 
(1 − 𝜆)(3 − 𝜆) + 2 = 0 

 



𝜆2 − 4𝜆 + 3 + 2 = 𝜆2 − 4𝜆 + 5 = 0 
 

𝜆 =
4 ± √16 − 4(1)(5)

2(1)
=

4 ± √16 − 20

2
=

4 ± √−4

2
=

4 ± 2𝑖

2
= 2 ± 𝑖 

 

𝐴 − 𝜆𝐼 = [
1 − (2 + 𝑖) −2

1 3 − (2 + 𝑖)
] = [

1 − 2 − 𝑖 −2
1 3 − 2 − 𝑖

] = [
−1 − 𝑖 −2

1 1 − 𝑖
] 

 
𝑥1 + (1 − 𝑖)𝑥2 = 0 
𝑥1 = (−1 + 𝑖)𝑥2 

𝑥2 = 𝑥2 
 

𝑣1 = [
−1 + 𝑖

1
] = [

−1
1

] + [
1
0
] 𝑖 

 

𝐴 − 𝜆𝐼 = [
1 − (2 − 𝑖) −2

1 3 − (2 − 𝑖)
] = [

1 − 2 + 𝑖 −2
1 3 − 2 + 𝑖

] = [
−1 + 𝑖 −2

1 1 + 𝑖
] 

 
𝑥1 + (1 + 𝑖)𝑥2 = 0 
𝑥1 = (−1 − 𝑖)𝑥2 

𝑥2 = 𝑥2 
 

𝑣2 = [
−1 − 𝑖

1
] = [

−1
1

] + [
−1
0

] 𝑖 

 
This trick with the complex conjugates also works for real solutions with square roots. 
 
Complex eigenvalues (eigenvectors) mean that the matrix is acting like a scaled rotation matrix. 
 

Rotation matrices: 𝑇 = [
𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃

] 

 
If our 2x2 matrix has complex eigenvalues, for 𝜆 = 𝑎 − 𝑏𝑖 (𝑏 ≠ 0), and the corresponding eigenvector, 
there is a similarity transformation 𝑃 so that 𝐴 = 𝑃𝐶𝑃−1, where 𝑃 = [𝑅𝑒(𝑣)  𝐼𝑚(𝑣)], and 

𝐶 = [
𝑎 −𝑏
𝑏 𝑎

]. 

 
For the previous example: 
 

𝑃 = [
−1 −1
1 0

] , 𝐶 = [
2 −1
1 2

] 

 
 

𝐶 = [
2 −1
1 2

] is a scaled rotation matrix. cos 𝜃 =
𝑎

𝑟
, sin𝜃 =

𝑏

𝑟
, 𝑟 = √𝑎2 + 𝑏2 = √5 

 

𝐶 = √5

[
 
 
 
2

√5

−1

√5
1

√5

2

√5]
 
 
 

 



 

𝜃 = cos−1 (
2

√5
) = 0.46367609…𝑟𝑎𝑑𝑖𝑎𝑛𝑠 = 26.57° 

 
 
Applications. 
 
Markov Chains 
Discrete Dynamical Systems 
Systems of Ordinary Differential Equations. 
 
Markov chains are matrices that represent probabilities of transitioning between states. 
If the columns of the matrix add up to 1 (kind of normalization) then they can represent probabilities. 
 
Markov chains tend (in most cases) toward a steady state. lim

𝑛→∞
𝑃𝑛𝑥0 = 𝑞 or 𝑃𝑞 = 𝑞. 

 
𝑃𝑞 = 𝑞 vs. 𝐴𝑥 = 𝜆𝑥 
 
𝜆 = 1 is always an eigenvalue of the matrix P. it is the eigenvalue that corresponds to the steady state 
vector. 
 

𝑃𝑞 − 𝑞 = (𝑃 − 𝐼)𝑞 = 0  𝑜𝑟 (𝐴 − 𝜆𝐼)𝑥 = 0 
 
Discrete Dynamical systems are systems that change over time, but are only measured at discrete times. 
 

𝐴 = [
0.5 0.4

−0.7 1.1
] 

 
The behavior of the system will depend on the eigenvalue (and the eigenvectors). 
 
If the eigenvalue is bigger than 1, then both populations will grow. If both eigenvalues are less than 1, 
then both populations will die out. If one eigenvalue is 1, then there is a steady state.  
 
Use the eigenvectors to make a basis for the space: 𝑥0 = 𝑐1𝑣1 + 𝑐2𝑣2 

𝑥𝑘 = 𝑐1𝜆1
𝑘𝑣1 + 𝑐2𝜆2

𝑘𝑣2 
 
Zero population is the baseline. If the population is tending toward 0 vector, we call this an attractor. If 
the population tends to grow (in both directions), then the 0 vector is a repeller. 0 can be a saddle point, 
if one eigenvalue is bigger than 1, and one is less than 1.  (assuming that all eigenvalues are positive). 
 
In theory, you can have complex eigenvalues (that produce a rotation), but negative values of the state 
vector have no meaning. – if 0 is really a zero. If the eigenvalue is complex, it’s the magnitude of the 
discrete eigenvalue that determines attraction or repelling.  
 
Systems of ordinary differential equations. 
 



[

𝑑𝑥

𝑑𝑡
𝑑𝑦

𝑑𝑡

] = [
𝑎11 𝑎12

𝑎21 𝑎22
] [

𝑥(𝑡)

𝑦(𝑡)
] 

 
𝑥′ = 𝐴𝑥 

 

𝑥 = 𝑒𝜆𝑡 
 

𝑥 = 𝑐1𝑒
𝜆1𝑡 + 𝑐2𝑒

𝜆2𝑡 
 

𝑥 = [
𝑐11

𝑐21
] 𝑒𝜆1𝑡 + [

𝑐12

𝑐22
] 𝑒𝜆2𝑡 

 
The 𝜆𝑠 are the eigenvalues of the A matrix, and the c-vectors are the eigenvectors. 
 
If 𝜆 is real and positive, the solution grows away from the origin. If they are real and negative, they grow 
toward the origin. If the there is a 𝜆 = 0, this is a steady state. If they are opposite signs, then the origin 
is a saddle point. If they are complex, then there is a rotation. The real part of the eigenvalue will 
determine if the origin attracts or repels. 
 
 
 
 


