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−2𝑅1 + 𝑅2 → 𝑅2 

 

[
1 ℎ −5
0 −2ℎ − 8 16

] 

−2ℎ − 8 ≠ 0 
 

−2𝑅1 + 𝑅2 → 𝑅2, −4𝑅1 + 𝑅3 → 𝑅3 
 

[
1 2
0 0
0 −3

   
4 5

−3 −6
−12 −18

] 

 

[
1 2
0 −3
0 0

   
4 5

−12 −18
−3 −6

] 

 

[
1 2
0 1
0 0

   
4 5
4 6

−3 −6
] 

 

[
1 2
0 1
0 0

   
4 5
4 6
1 2

] 

 
−4𝑅3 + 𝑅2 → 𝑅2 
−4𝑅3 + 𝑅1 → 𝑅1 

 

[
1 2
0 1
0 0

   
0 −3
0 −2
1 2

] 

 
−2𝑅2 + 𝑅1 → 𝑅1 

 

[
1 0
0 1
0 0

   
0 1
0 −2
1 2

] 

 

 
Linear Transformations 
 



A transformation is a function (a mapping) T from 𝑅𝑛 to 𝑅𝑚 is a rule that assigns each vector in 𝑅𝑛 to a 
vector in 𝑅𝑚. The set 𝑅𝑛 that is the input to the transformation is called the domain. The set 𝑅𝑚 is the 
set the transformation is mapping into, and that is called the codomain. 
 
There is a difference between the codomain and the range. 
 

 
 

𝑓(𝑥) = 𝑥3, 𝑔(𝑥) = 𝑥2 
 
If a function is onto, then the range and the codomain are equal. 
If a function is one-to-one, then every vector from the domain maps onto a unique vector in the range 
(no two vectors map onto the same value in the range). 
 
Linear transformation 
 
Properties that must be satisfied to be linear: 
 

1) 𝑇(0) = 0 (functions that are “linear” otherwise but misses this property are called affine 
transformations) 

2) 𝑇(𝑢) + 𝑇(𝑣) = 𝑇(𝑢 + 𝑣)  -- closed under addition  
3) 𝑘𝑇(𝑢) = 𝑇(𝑘𝑢) – closed under scalar multiplication 

 
If we want to prove that a transformation is linear, then we have to prove these three properties. 
 
Linear transformations can be expressed as matrices, but they don’t have to be. 

𝑇(𝑥) = 𝐴𝑥 
 

𝑇 ([

𝑥1

𝑥2

𝑥3

]) = [

𝑥1 − 3𝑥2

3𝑥1 + 5𝑥2

−𝑥3 + 7𝑥1

] 

 

𝑇 ([
1
2
3
]) = [

1 − 3(2)

3(1) + 5(2)

−3 + 7(1)
] = [

−5
13
4

] 



𝑇(𝑥) = 𝐴𝑥: 𝑅3 ↦ 𝑅3 
 
Do our three properties work? 

𝑇 ([
0
0
0
]) = [

0 − 3(0)

3(0) + 5(0)

−0 + 7(0)
] = [

0
0
0
] 

 
That first property checks out. 
 

𝑢 = [

𝑢1

𝑢2

𝑢3

] , 𝑣 = [

𝑣1

𝑣2

𝑣3

] 

 
𝑇(𝑢) + 𝑇(𝑣) = 𝑇(𝑢 + 𝑣) 

 

𝑇(𝑢) = 𝑇 ([

𝑢1

𝑢2

𝑢3

]) = [

𝑢1 − 3𝑢2

3𝑢1 + 5𝑢2

−𝑢3 + 7𝑢1

] , 𝑇(𝑣) =  𝑇 ([

𝑣1

𝑣2

𝑣3

]) = [

𝑣1 − 3𝑣2

3𝑣1 + 5𝑣2

−𝑣3 + 7𝑣1

] 

 

𝑇(𝑢) + 𝑇(𝑣) = [

𝑢1 − 3𝑢2

3𝑢1 + 5𝑢2

−𝑢3 + 7𝑢1

] + [

𝑣1 − 3𝑣2

3𝑣1 + 5𝑣2

−𝑣3 + 7𝑣1

] = [

𝑢1 − 3𝑢2 + 𝑣1 − 3𝑣2

3𝑢1 + 5𝑢2 + 3𝑣1 + 5𝑣2

−𝑢3 + 7𝑢1 − 𝑣3 + 7𝑣1

]

= [

𝑢1 + 𝑣1 − 3(𝑢2 + 𝑣2)

3(𝑢1 + 𝑣1) + 5(𝑢2 + 𝑣2)

−(𝑢3 + 𝑣3) + 7(𝑢1 + 𝑣1)
] 

 

𝑇(𝑢 + 𝑣) = 𝑇 ([

𝑢1

𝑢2

𝑢3

] + [

𝑣1

𝑣2

𝑣3

]) = 𝑇 ([

𝑢1 + 𝑣1

𝑢2 + 𝑣2

𝑢3 + 𝑣3

]) = [

𝑢1 + 𝑣1 − 3(𝑢2 + 𝑣2)
3(𝑢1 + 𝑣1) + 5(𝑢2 + 𝑣2)
−(𝑢3 + 𝑣3) + 7(𝑢1 + 𝑣1)

] 

 
Satisfies the addition property 
 
What about 𝑘𝑇(𝑢) = 𝑇(𝑘𝑢)? 
 
 

𝑘𝑇(𝑢) = 𝑘𝑇 ([

𝑢1

𝑢2

𝑢3

]) = 𝑘 [

𝑢1 − 3𝑢2

3𝑢1 + 5𝑢2

−𝑢3 + 7𝑢1

] = [

𝑘(𝑢1 − 3𝑢2)
𝑘(3𝑢1 + 5𝑢2)
𝑘(−𝑢3 + 7𝑢1)

] 

 
 

𝑇(𝑘𝑢) = 𝑇 ([

𝑘𝑢1

𝑘𝑢2

𝑘𝑢3

]) = [

𝑘𝑢1 − 3𝑘𝑢2

3𝑘𝑢1 + 5𝑘𝑢2

−𝑘𝑢3 + 7𝑘𝑢1

] 

 
Does satisfy the scalar multiplication property. 
All the required properties are satisfied, so the transformation is linear. 
 



What makes a transformation nonlinear? Any non-linear operation (squares, square roots, division, 
multiplying by another variable, a loose constant, etc.) 
 

𝑇 ([
𝑥1

𝑥2
]) = [

𝑥1 + |𝑥2|

𝑥2
2

𝑥2 + 7
] 

 

𝑇 ([
0
0
]) = [

0
0
7
] 

 

𝑇 ([
𝑥1

𝑥2
]) = [

𝑥1 + |𝑥2|

𝑥2
2 ] 

 
You just need to find one counterexample to show that at least one property fails. 
 

𝑇 ([
−2
−2

]) = [
0
4
] 

 

𝑇 ([
−3
−4

]) = [
1
16

] 

 

𝑇 ([
−2
−2

]) +  𝑇 ([
−3
−4

]) = [
1
20

] 

 

𝑇 ([
−2
−2

] + [
−3
−4

]) = 𝑇 ([
−5
−6

]) = [
1
36

] 

 
These are not equal, so the property fails. 
 

(−1)𝑇 ([
−2
−2

]) = [
0

−4
] 

 

𝑇 ([
2
2
]) = [

4
4
] 

The scalar multiplication property is not satisfied. 
 
Representing transformations as matrices 
 
Rotation Matrix for a vector (positive angles are counterclockwise) 
 

[
cos𝜃 − sin𝜃
sin𝜃 cos 𝜃

] 

 

Rotate counterclockwise 45-degrees, 
𝜋

4
 radians 

[
 
 
 
1

√2
−

1

√2
1

√2

1

√2 ]
 
 
 

 

 



Reflection across 𝑥1 (𝑥 − 𝑎𝑥𝑖𝑠)  [
1 0
0 −1

] (vertical reflection) 

 

Reflection across the 𝑥2 (y-axis) [
−1 0
0 1

]  (horizontal reflection) 

 

Reflection across the𝑦 = 𝑥  line (𝑥1 = 𝑥2) [
0 1
1 0

]  (switches x and y) 

 

Reflection across the−𝑥1 = 𝑥2 (y=-x) [
0 −1

−1 0
] (both switches x and y, and changes the sign) 

 

Reflection across the origin. [
−1 0
0 −1

]  (switches signs but not positions) 

 

Horizontal stretch/compression [
𝑘 0
0 1

] (stretches 𝑥1 by k) 

 

Vertical stretch/compression [
1 0
0 𝑘

] (stretches 𝑥2 by k) 

 

Whole vector (like scalar multiplication) [
𝑘 0
0 𝑘

] 

 
Shears 

Horizontal shear [
1 𝑘
0 1

] 

 

Vertical shear [
1 0
𝑘 1

] 

 
Projection transformations 

Horizontal projection [
1 0
0 0

] 

 

Vertical projection [
0 0
0 1

] 

 
Successive transformations work like composition function. 
 
T=reflection across y=x 
S=shear 
P=projection 
 

𝑇(𝑥) = 𝐴𝑥 
𝑆(𝑥) = 𝐵𝑥 
𝑃(𝑥) = 𝐶𝑥 

 

Reflection, then shear : 𝑇(𝑥) = 𝐴𝑥 ⟶ 𝑆(𝑇(𝑥)) = 𝑆(𝐴𝑥) = 𝐵(𝐴𝑥) = 𝐵𝐴𝑥 

Then do the projections ⟶ 𝑃 (𝑆(𝑇(𝑥))) = 𝑃(𝐵𝐴𝑥) = 𝐶(𝐵𝐴𝑥) = 𝐶𝐵𝐴𝑥 

 
CBA matrix would be the result of all three transformations applied in this order to the vector x 



 
A function is onto 𝑅𝑚 (codomain) is for each vector b in 𝑅𝑚, it is the image of a vector in 𝑅𝑛 (domain) 
Image=output of the transformation for the given vector: from a matrix perspective, there need to be m 
pivots (one pivot in every row of the reduced matrix) 
 
A function is one-to-one (image is unique in the domain=one way to get to each vector in the range), if 
each vector in the codomain is the image of exactly one vector in the domain. From a matrix 
perspective: there needs to be n pivots (one pivot in every column) (no free variables) – homogeneous 
system has only the trivial solution. 
 
Systems that are square (the same number of rows as variables), then the transformation will be either 
both or neither. 
 

𝑒1 = [
1
0
0
] , 𝑒2 = [

0
1
0
] , 𝑒3 = [

0
0
1
] 

 

A transformation maps from 𝑅3 ↦ 𝑅4, by 𝑇(𝑒1) = [

4
3
2
0

] , 𝑇(𝑒2) = [

1
−1
1
6

] , 𝑇(𝑒3) = [

4
0

−2
3

] 

Write matrix of the transformation. 

[

4
3
2
0

1
−1
1
6

4
0

−2
3

] 

 

𝑇 ([

𝑥1

𝑥2

𝑥3

]) = [

𝑥1 − 3𝑥2

3𝑥1 + 5𝑥2

−𝑥3 + 7𝑥1

] 

 

[
1 −3 0
3 5 0
7 0 −1

] 

 
Chapter 2 starts (might swing back to talk about 1.10) 
 
Matrices as objects – as vectors – defined by number of rows and the number of columns: 𝑚 × 𝑛. 
Perform addition and scalar multiplication component by component 
 

2 [
2 3
4 5

] = [
4 6
8 10

] 

Add matrices together if they are exactly the same size 
 

[
2 3
4 5

] + [
1 2
0 −3

] = [
3 5
4 2

] 

 
To prove these, you can only use the definition of addition, scalar multiplication, and properties of real 
numbers inside the components. 
 



Commutative property of matrices 
𝐴 + 𝐵 = 𝐵 + 𝐴 

 

[
𝑎11 𝑎12

𝑎21 𝑎22
] + [

𝑏11 𝑏12

𝑏21 𝑏22
] = [

𝑎11 + 𝑏11 𝑎12 + 𝑏12

𝑎21 + 𝑏21 𝑎22 + 𝑏22
] 

 

[
𝑏11 𝑏12

𝑏21 𝑏22
] + [

𝑎11 𝑎12

𝑎21 𝑎22
] = [

𝑏11 + 𝑎11 𝑏12 + 𝑎12

𝑏21 + 𝑎21 𝑏22 + 𝑎22
] 

Equal by commutative property of real numbers 
 
Matrix multiplication 
Is defined for an 𝑚 × 𝑛 matrix multiplied by an 𝑛 × 𝑝 matrix, and the result is an 𝑚 × 𝑝 matrix 
The number of columns in the left matrix have to match the number of rows in the right matrix 
 
2 × 2  𝑡𝑖𝑚𝑒𝑠 2 × 2 is okay 
2 × 3 𝑡𝑖𝑚𝑒𝑠 2 × 3 is not okay – undefined 
 
2 × 3 𝑡𝑖𝑚𝑒𝑠 3 × 2 – result would be a 2 × 2. 
 

[
1 2
4 −2

] [
3
2
] = [

1(3) + 2(2)

4(3) + (−2)(2)
] = [

7
8
] 

 
 

[
1 2
4 −2

] [
1 0 1
3 4 2

] = [
1(1) + 2(3) 1(0) + 2(4) 1(1) + 2(2)

4(1) − 2(3) 4(0) − 2(4) 4(1) − 2(2)
] = [

7 8 5
−2 −8 0

] 

 
𝐴𝐵 ≠ 𝐵𝐴 

 
In identity matrix 
 
Transposing : switching the rows into the columns. 

[
1 2
3 4

]
𝑇

= [
1 3
2 4

] 

 
(𝐵𝐴)𝑇 = 𝐴𝑇𝐵𝑇  

 
 


