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Limit Comparison Tests (5.4) 
Root & Ratio Tests (5.6) 
 
Last time we discussed the direct comparison test. Recall that the direct comparison test required 
inequalities to point in specific directions in order to make the test valid. 
 
We want to know what a series defined by 𝑎𝑛 is doing, and we have a similar series 𝑏𝑛 that we know 
from another test what it does. 
 
If 𝑏𝑛 converges, then to apply the direct comparison test, we required that 𝑎𝑛 ≤ 𝑏𝑛 for all n.  If 𝑏𝑛 
diverges, then we required that 𝑎𝑛 ≥ 𝑏𝑛 for all n.  
 
The limit comparison is going to not require inequalities to the do the work, so it has more flexibility 
than the direct comparison. Instead, we are going to use ratios to do the comparison. 
 
The limit comparison: we want to know what a series defined by 𝑎𝑛 is doing, and we have another series 
𝑏𝑛 that is similar and which we know either converges or diverges by another test. 
 

Then lim
𝑛→∞

𝑎𝑛

𝑏𝑛
 : if the limit is a finite and non-zero value, then the two series converge or diverge 

together.  
However, if the limit is 0 or ∞ then the series do not compare and you need to choose a different 𝑏𝑛 
(because the comparison is bad) or a different test. 
 
Consider the series 

∑
1

𝑛2 − 1

∞

𝑛=2

 

 

We can’t use the direct comparison here because 
1

𝑛2−1
≥

1

𝑛2
, and 

1

𝑛2
 has a convergent series. This doesn’t 

satisfy the inequality that we needed for the direct comparison. 
 
Instead we use the limit comparison. 
 

lim
𝑛→∞

1
𝑛2 − 1
1
𝑛2

= lim
𝑛→∞

𝑛2

𝑛2 − 1
= lim

𝑛→∞
[1 +

1

𝑛2 − 1
] = 1 + 0 = 1 

 

Therefore, since ∑
1

𝑛2
 converges by the p-series, then the series ∑

1

𝑛2−1
∞
𝑛=2  also converges by the limit 

comparison test. 
 
It doesn’t really matter which way you divide. If the series don’t compare, then you will get either 0 or 
∞, but if you flip the order of division then you’ll just get ∞ or 0 for the same comparison. 
 
Any finite (non-zero) value will still produce a finite, non-zero value in the reciprocal. 



 
How do you pick the series to do the comparison to? 
 
For a rational expression, use the leading terms in the numerator and the denominator. Reduce 
whatever is left. 
If  

𝑎𝑛 =
(𝑛2 + 𝑛 − 1)

𝑛4 + 5𝑛3 − 6
 

Compare to 𝑏𝑛 =
𝑛2

𝑛4
=

1

𝑛2
 

 
 
Similarly for something similar to a geometric series 
If 

𝑎𝑛 =
(4𝑛 + 𝑛3)

7𝑛 − 1
 

 

Compare to 𝑏𝑛 =
4𝑛

7𝑛
= (

4

7
)
𝑛

 

 
 
If you have something like  

𝑎𝑛 =
𝑛 − 1

2𝑛 + 𝑛2
 

 

You could compare to 
1

2𝑛
= 𝑏𝑛 or worst case compare to 𝑏𝑛 =

𝑛

2𝑛
= 𝑛2−𝑛 

 
Example. 
 

∑
ln(𝑛)

𝑛2

∞

𝑛=2

 

 

We could try to replace ln(𝑛) with 𝑛.  That would reduce to  
𝑛

𝑛2
=

1

𝑛
 diverges. For the direct comparison 

this wouldn’t work because ln(𝑛) ≤ 𝑛. 
 

lim
𝑛→∞

ln(𝑛)
𝑛2

1
𝑛

= lim
𝑛→∞

ln(𝑛)

𝑛2
×
𝑛

1
= lim

𝑛→∞

ln(𝑛)

𝑛
= lim

𝑛→∞

1

𝑛
= 0 

 
Doesn’t work because 0 means that the series don’t behave similarly. 
 



 
√𝑛 ≥ ln(𝑛) 

 

ln(𝑛)

𝑛2
≤
√𝑛

𝑛2
=

1

𝑛
3
2

 

 

We can do a direct comparison here.  Since 
1

𝑛
3
2

 converges by the p-series, and 
ln(𝑛)

𝑛2
≤

1

𝑛
3
2

. 

 
If we did this same test with the limit comparison 
 

lim
𝑛→∞

(
ln(𝑛)
𝑛2

)

1

𝑛
3
2

= lim
𝑛→∞

ln(𝑛)

𝑛2
× 𝑛

3
2 = lim

𝑛→∞

ln(𝑛)

𝑛1/2
= lim

𝑛→∞

1/n

1
2𝑛

−
1
2

= lim
𝑛→∞

1

𝑛
× 2𝑛

1
2 = lim

𝑛→∞
2𝑛−

1
2 = 0 

 
 
 
Direct comparison works better with ln(n) than the limit comparison. (or you can try to use maybe an 
integral test). The limit comparison works better with rational expressions (numerator and denominator 
are polynomials), or expressions that can “simplify” to geometric series. 
 
Ratio and Root tests (5.6) 
 
Ratio test: 
If we have a series defined by 𝑎𝑛. We are going to try to treat the series like a geometric series. We want 
to find the ratio of consecutive terms and see how it behaves in the limit. 
 

lim
𝑛→∞

|
𝑎𝑛+1
𝑎𝑛

| 

 
If the limit is < 1, the series converges. If the limit is > 1 the series diverges.  If the limit is equal to 1, 
the convergence/diverges is inconclusive. (This means you would need another test.) 
 
Root test: 
If we have a series defined by 𝑎𝑛. We are going to get the ratio of terms in the series in the limit in a 
slightly different way. 
 

lim
𝑛→∞

√|𝑎𝑛|
𝑛  



If the limit is < 1, the series converges. If the limit is > 1 the series diverges.  If the limit is equal to 1, 
the convergence/diverges is inconclusive. (This means you would need another test.) 
 
Factorials work best in the ratio test.  If you have an expression where most terms are raised to the nth 
power, then the root test works well (with much less algebra). 
 

Polynomials/rational expressions will be 1 in the limit in both cases. lim
𝑛→∞

√𝑛
𝑛

= 1. 

𝑛!

(𝑛 + 1)!
=

𝑛!

𝑛! (𝑛 + 1)
=

1

𝑛 + 1
 

 
(2𝑛 + 1)!

(2𝑛 + 3)!
=

(2𝑛 + 1)!

(2𝑛 + 1)! (2𝑛 + 2)(2𝑛 + 3)
=

1

(2𝑛 + 2)(2𝑛 + 3)
 

 
Examples. 
 

∑
2𝑛

𝑛!

∞

𝑛=0

 

 
Use the ratio test. 
 

lim
𝑛→∞

2𝑛+1

(𝑛 + 1)!
2𝑛

𝑛!

= lim
𝑛→∞

2𝑛+1

(𝑛 + 1)!
×
𝑛!

2𝑛
= lim

𝑛→∞

2𝑛(2)

(𝑛 + 1)𝑛!
×
𝑛!

2𝑛
= lim

𝑛→∞

(2)

(𝑛 + 1)
= 0 

 
This limit is <1, therefore the series converges. 
 
Example. 

∑
𝑛𝑛

𝑛!

∞

𝑛=0

 

 

lim
𝑛→∞

(𝑛 + 1)𝑛+1

(𝑛 + 1)!
𝑛𝑛

𝑛!

= lim
𝑛→∞

(𝑛 + 1)𝑛+1

(𝑛 + 1)!
×
𝑛!

𝑛𝑛
= lim

𝑛→∞

(𝑛 + 1)𝑛(𝑛 + 1)

(𝑛 + 1)𝑛!
×
𝑛!

𝑛𝑛
= 

 

lim
𝑛→∞

(𝑛 + 1)𝑛

𝑛𝑛
= lim

𝑛→∞
(
𝑛 + 1

𝑛
)
𝑛

= lim
𝑛→∞

(1 +
1

𝑛
)
𝑛

 

 

ln ( lim
𝑛→∞

(1 +
1

𝑛
)
𝑛

) = ln(𝐿) 

 

lim
𝑛→∞

𝑙𝑛 (1 +
1

𝑛
)
𝑛

= lim
𝑛→∞

𝑛 ln (1 +
1

𝑛
) = lim

𝑛→∞

ln (1 +
1
𝑛)

𝑛−1
lim
𝑛→∞

1

1 +
1
𝑛

× (−
1
𝑛2
)

−
1
𝑛2

= lim
𝑛→∞

1

1 +
1
𝑛

= 1 



 
1 = ln(𝐿) 
𝐿 = 𝑒 

lim
𝑛→∞

(1 +
1

𝑛
)
𝑛

= 𝑒 

Since e>1, this series diverges. 
 
Example. 

∑
3𝑛

2

2𝑛
3

∞

𝑛=0

 

 
Use the root test. 
 

lim
𝑛→∞

√
3𝑛

2

2𝑛
3

𝑛

= lim
𝑛→∞

3
𝑛2

𝑛

2
𝑛3

𝑛

= lim
𝑛→∞

3𝑛

2𝑛
2 = lim

𝑛→∞
(
3

2𝑛
)
𝑛

 

 

𝑙𝑛 lim
𝑛→∞

(
3

2𝑛
)
𝑛

= ln(𝐿) 

 

lim
𝑛→∞

𝑙𝑛 (
3

2𝑛
)
𝑛

= lim
𝑛→∞

𝑛 ln 3(2−𝑛) = lim
𝑛→∞

ln
3(2−𝑛)

𝑛−1
= lim

𝑛→∞

3(−)(2−𝑛) ln 2

−𝑛−2
= lim

𝑛→∞

𝑛2(3 ln 2)

2𝑛
= 0 

 
This is less than 1 and so converges. 
 

A more typical root test is 𝑎𝑛 = (
2𝑛+1

3𝑛−2
)
4𝑛

 

 
 
So for next time, we will look at ratio test especially used in power series (infinite series that contain x). 
Then we’ll also talk about examples and how to choose a good test. Which ones work, and which ones 
are the easiest to try first. 
 
 
 


