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Taylor Polynomials/Taylor Series 
 
Polynomial vs. Series 
Polynomial has a highest degree term (stop counting at n), whereas, a Taylor series goes on to infinity. A 
Taylor polynomial is essentially an approximation of Taylor series, where just stop counting after a 
specified number of terms. 
 
𝑃4: The 4th degree approximation of the infinite series, spelled out with a list of terms 
𝑃∞: the equivalent notation for the infinite series: summation notation generally. 
 
Taylor series is the general name for power series derived from the process of taking derivatives; they 
can be centered anywhere. 
 
Maclaurin Series: these are Taylor series, but centered at 0 
 
Taylor series is a power series, but the original function is not required to be rational function (as was 
the case with the geometric series method of creating power series). Instead, we going to extend the 
process of linear approximations to higher order derivatives in order to obtain a polynomial 
approximation for a function. 
 
Polynomials are easy to work with. It’s easier to do proofs on polynomials than on other kinds of 
functions. The algebra is easier with polynomials, and by taking more and more terms of our 
approximation, we can make it as accurate as we like. 
 
We can use the same procedure to recenter a polynomial (refactoring). Suppose you have an expression 
like 𝑓(𝑥) = 𝑥3 + 2𝑥2 − 6𝑥 + 5, but you want to rewrite the expression in terms of (𝑥 − 2) instead of 
just x. 
 
Given 𝑓(𝑥) is a function, and it has continuous derivatives on some open interval near 𝑐. The Taylor 
series (approximation) is given by: 
 

𝑓(𝑥) = ∑
𝑓(𝑛)(𝑐)(𝑥 − 𝑐)𝑛

𝑛!

∞

𝑛=0

 

 
𝑐 is the center 

𝑓(𝑛) is the nth derivative 

𝑓(𝑛)(𝑐) is the nth derivative evaluated at c 
𝑛!: is 4!=4(3)(2)(1) 
 

𝑓(0)(𝑥) = 𝑓(𝑥)  
 

𝑓(𝑥) = 𝑓(𝑐) + 𝑓′(𝑐)(𝑥 − 𝑐) +
𝑓′′(𝑐)(𝑥 − 𝑐)2

2
+

𝑓′′′(𝑐)(𝑥 − 𝑐)3

6
+

𝑓(4)(𝑐)(𝑥 − 𝑐)4

24
+ ⋯ 

 

𝑓(4)(𝑥) = 𝑓𝐼𝑉(𝑥) 



 
Maclaurin series: 
 

𝑓(𝑥) = 𝑓(0) + 𝑓′(0)𝑥 +
𝑓′′(0)𝑥2

2
+

𝑓′′′(0)𝑥3

6
+

𝑓(4)(0)𝑥4

24
+ ⋯ 

 
Example. Find the Taylor series for the function 𝑓(𝑥) = 𝑒−2𝑥 (centered at x=0; i.e. this will be a 
Maclaurin series). Plot 𝑃0, 𝑃1, 𝑃2, … , 𝑃6 with the original function. 
 

𝑛 𝑛! 𝑓(𝑛)(𝑥) 𝑓(𝑛)(𝑐) (𝑥 − 𝑐)𝑛 𝑓(𝑛)(𝑐)(𝑥 − 𝑐)𝑛

𝑛!
 

0 1 𝑒−2𝑥 1 1 (1)(1)

1
= 1 

1 1 −2𝑒−2𝑥 -2 𝑥 
−

2𝑥

1
= −2𝑥 

2 2 4𝑒−2𝑥 4 𝑥2 4𝑥2

2
= 2𝑥2 

3 6 −8𝑒−2𝑥 -8 𝑥3 
−

8𝑥3

6
= −

4

3
𝑥3 

4 24 16𝑒−2𝑥 16 𝑥4 16𝑥4

24
=

2𝑥4

3
 

5 120 −32𝑒−2𝑥 -32 𝑥5 
−

32𝑥5

120
= −

4

15
𝑥5 

6 720 64𝑒−2𝑥 64 𝑥6 64𝑥6

720
=

4

45
𝑥6 

7 5040 −128𝑒−2𝑥 -128 𝑥7 
−

128𝑥7

5040
= −

8

315
𝑥7 

 

𝑓(𝑥) = 𝑒−2𝑥 = ∑
(−1)𝑛2𝑛𝑥𝑛

𝑛!

∞

𝑛=0

 

 

 
 

𝑃0 = 1 
𝑃1 = 1 − 2𝑥 (𝑙𝑖𝑛𝑒𝑎𝑟 𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛) 



𝑃2 = 1 − 2𝑥 + 2𝑥2 

𝑃3 = 1 − 2𝑥 + 2𝑥2 −
4

3
𝑥3 

𝑃4 = 1 − 2𝑥 + 2𝑥2 −
4

3
𝑥3 +

2𝑥4

3
 

𝑃5 = 1 − 2𝑥 + 2𝑥2 −
4

3
𝑥3 +

2𝑥4

3
−

4

15
𝑥5 

𝑃6 = 1 − 2𝑥 + 2𝑥2 −
4

3
𝑥3 +

2𝑥4

3
−

4

15
𝑥5 +

4

45
𝑥6 

 
What we see is that as we extend the Taylor polynomial to more terms, we get better and better 
approximations to the curve, and they stay closer to the original function for longer. 
 

Most books will include a table of common Taylor series. 𝑒𝑥, sin(𝑥) , cos(𝑥) , ln(𝑥) , arctan(𝑥) ,
1

𝑥
,… 

Sometimes it includes tan(𝑥), rational powers/binomial, and others like cosh (𝑥). 
 
Error on the Taylor series. 
 

𝑅𝑛 ≤ |
𝑓(𝑛+1)(𝑧)

(𝑛 + 1)!
(𝑥 − 𝑐)𝑛+1| 

 

When we are estimating, the 𝑓(𝑛+1)(𝑧) we can think of as the maximum of the function on some 
interval where we are doing the approximation. 
 
While this z value can in theory be anywhere in the interval where were are approximating, typically, we 
use the endpoints of the interval as long as the function is increasing or decreasing over the entire 
interval. 
 
Consider our 𝑃6 polynomial from our example. Since we stopped counting at n=6, the error/remainder is 
based on the 7th term. 
 

𝑅𝑛 ≈ |
𝑓(7)(𝑧)

7!
𝑥7| 

 

𝑓(7)(𝑥) = −128𝑒−2𝑥 

|𝑓(7)(𝑥)| = 128𝑒−2𝑥 

 
We want to find the maximum error on the interval [-1,1]. 
This is a decreasing function on this interval with no critical points. 

𝑓(7)(−1) = 128𝑒−2(−1) = 128𝑒2 (maximum) 

𝑓(7)(1) = 128𝑒−2(1) = 128𝑒−2  
 
Use the maximum in error estimate: 
 

𝑅𝑛 ≤ |
128𝑒2(−1)7

7!
| ≈ 0.1876 … 



 

We want to find the maximum error on the interval [−
1

2
,

1

2
]. 

 

𝑓(7) (−
1

2
) = 128𝑒

−2(−
1

2
)

= 128𝑒 (maximum) 

𝑓(7) (
1

2
) = 128𝑒

−2(
1

2
)

= 128𝑒−1  

 
Use the maximum in error estimate: 
 

𝑅𝑛 ≤ |
128𝑒 (−

1
2

)
7

7!
| ≈ 5.39 × 10−4 

 
 
Now that we have these Taylor approximations, what can we do with it? 
Try to derive power series for more complex functions (at least polynomial approximations). Integrating 
and differentiating. Limits. Substitutions to create series for more complex functions.  
 

 

∑
(2𝑛)! 𝑥𝑛

𝑛2𝑛

∞

𝑛=0

 

 

lim
𝑛→∞

(2𝑛 + 2)! 𝑥𝑛+1

(𝑛 + 1)2𝑛+2
×

𝑛2𝑛

(2𝑛)! 𝑥𝑛
= lim

𝑛→∞

(2𝑛 + 2)(2𝑛 + 1)(2𝑛)! 𝑥

(𝑛 + 1)2𝑛+2
×

𝑛2𝑛

(2𝑛)!
= 

 

lim
𝑛→∞

(2𝑛 + 2)(2𝑛 + 1)𝑥

(𝑛 + 1)2𝑛+2
×

𝑛2𝑛

1
= lim

𝑛→∞

2(𝑛 + 1)(2𝑛 + 1)𝑥

(𝑛 + 1)2𝑛(𝑛 + 1)2
×

𝑛2𝑛

1
= 

 

lim
𝑛→∞

2(2𝑛 + 1)𝑥

(𝑛 + 1)2𝑛(𝑛 + 1)
×

𝑛2𝑛

1
= ( lim

𝑛→∞

2(2𝑛 + 1)

(𝑛 + 1)
) ( lim

𝑛→∞

𝑛2𝑛

(𝑛 + 1)2𝑛) ( lim
𝑛→∞

|𝑥|) 

 
 

lim
𝑛→∞

𝑛2𝑛

(𝑛 + 1)2𝑛
 

Do the reciprocal to make the math easier: 
 

lim
𝑛→∞

(𝑛 + 1)2𝑛

(𝑛)2𝑛
= lim

𝑛→∞
(

𝑛 + 1

𝑛
)

2𝑛

= lim
𝑛→∞

(1 +
1

𝑛
)

2𝑛

= 𝑒2 

 

lim
𝑛→∞

(1 +
1

𝑛
)

𝑛

= 𝑒 

 

𝑙𝑛 ( lim
𝑛→∞

(1 +
1

𝑛
)

𝑛

) = ln (𝐿) 

 



lim
𝑛→∞

𝑙𝑛 (1 +
1

𝑛
)

𝑛

= lim
𝑛→∞

𝑛 ln (1 +
1

𝑛
) = lim

𝑛→∞

ln (1 +
1
𝑛

)

𝑛−1
= lim

𝑛→∞

1

(1 +
1
𝑛

)
(−𝑛−2)

−𝑛−2
= lim

𝑛→∞

1

1 +
1
𝑛

= 1 

= ln (𝐿) 
 

𝐿 = 𝑒 
 

( lim
𝑛→∞

2(2𝑛 + 1)

(𝑛 + 1)
) ( lim

𝑛→∞

𝑛2𝑛

(𝑛 + 1)2𝑛) ( lim
𝑛→∞

|𝑥|) = 4(𝑒−2)|𝑥| < 1 

 
 
 
 
 


