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Continue with Exact Equations 
Numerical Methods: improvements on Euler’s, Runge-Kutta 
Review for the Exam 
 
Continue with Exact Equations 
Last time we talked about the procedure. Today we want to look at a test for exactness, and then we 
will look at integrating factors for making a problem into an exact equation. 
 
Test for exactness. 

𝑀(𝑥, 𝑦)𝑑𝑥 + 𝑁(𝑥, 𝑦)𝑑𝑦 = 0 
If the equation is exact then: 
 

𝑀𝑦 =
𝜕𝑀

𝜕𝑦
= 𝑁𝑥 =

𝜕𝑁

𝜕𝑥
 

If this equation true, then the differential equation is exact. 
 

𝑓𝑥𝑦 =
𝜕2𝑓

𝜕𝑦𝜕𝑥
= 𝑓𝑦𝑥 =

𝜕2𝑓

𝜕𝑥𝜕𝑦
 

 

𝑀 =
𝜕𝑓

𝜕𝑥
, 𝑁 =

𝜕𝑓

𝜕𝑦
 

 
(2𝑥𝑦2 + 4)𝑑𝑥 + (2𝑥2𝑦 − 6)𝑑𝑦 = 0 

 

𝑀(𝑥, 𝑦) = 2𝑥𝑦2 + 4, 𝑁(𝑥, 𝑦) = 2𝑥2𝑦 − 6 
 

𝑀𝑦 = 4𝑥𝑦, 𝑁𝑥 = 4𝑥𝑦 

This means the equation is exact and we can use the procedure we used last time to solve for the 
function. 
 
Solve. 

∫ 2𝑥𝑦2 + 4𝑑𝑥 = 𝑥2𝑦2 + 4𝑥 + 𝑔(𝑦) 

 

∫ 2𝑥2𝑦 − 6𝑑𝑦 = 𝑥2𝑦2 − 6𝑦 + ℎ(𝑥) 

 

𝑓(𝑥, 𝑦) = 𝑥2𝑦2 + 4𝑥 − 6𝑦 + 𝐾 
 

𝑥2𝑦2 + 4𝑥 − 6𝑦 + 𝐾 = 0 
 
Integrating factors for exact equations. 
Sometimes a problem is not exact, but can be made exact by using an integrating factor (these problems 
usually result from variables canceling).  
 

𝜇(𝑥) = 𝑒∫ 𝑝(𝑥)𝑑𝑥 



 

𝑝(𝑥) =
(𝑀𝑦 − 𝑁𝑥)

𝑁
 

If this function is a function of only x, then we can use this integrating factor. 
 

𝜇(𝑦) = 𝑒∫ 𝑞(𝑦)𝑑𝑦 
 

𝑞(𝑦) =
(𝑁𝑥 − 𝑀𝑦)

𝑀
 

 
If this q function is only a function of y, then we can use this integrating factor. 
 
Example. 

(2𝑥𝑦3 − 2𝑥3𝑦3 − 4𝑥𝑦2 + 2𝑥)𝑑𝑥 + (3𝑥2𝑦2 + 4𝑦)𝑑𝑦 = 0 
 

𝑀 = 2𝑥𝑦3 − 2𝑥3𝑦3 − 4𝑥𝑦2 + 2𝑥 
𝑀𝑦 = 6𝑥𝑦2 − 6𝑥3𝑦2 − 8𝑥𝑦 

 

𝑁 = 3𝑥2𝑦2 + 4𝑦 
𝑁𝑥 = 6𝑥𝑦2 

 
𝑀𝑦 ≠ 𝑁𝑥 

This is not exact. 
 

𝑞(𝑦) =
(𝑁𝑥 − 𝑀𝑦)

𝑀
=

6𝑥𝑦2 − (6𝑥𝑦2 − 6𝑥3𝑦2 − 8𝑥𝑦)

2𝑥𝑦3 − 2𝑥3𝑦3 − 4𝑥𝑦2 + 2𝑥
=

6𝑥3𝑦2 + 8𝑥𝑦

2𝑥𝑦3 − 2𝑥3𝑦3 − 4𝑥𝑦2 + 2𝑥

=
2𝑥𝑦(3𝑥2𝑦 + 4)

2𝑥(𝑦3 − 𝑥2𝑦3 − 2𝑦2 + 1)
=

𝑦(3𝑥2𝑦 + 4)

(𝑦3 − 𝑥2𝑦3 − 2𝑦2 + 1)
 

 
This won’t work. 
 

𝑝(𝑥) =
(𝑀𝑦 − 𝑁𝑥)

𝑁
=

6𝑥𝑦2 − 6𝑥3𝑦2 − 8𝑥𝑦 − 6𝑥𝑦2

3𝑥2𝑦2 + 4𝑦
=

−6𝑥3𝑦2 − 8𝑥𝑦

3𝑥2𝑦2 + 4𝑦
= −

2𝑥𝑦(3𝑥2𝑦 + 4)

𝑦(3𝑥2𝑦 + 4)
= −2𝑥 

 
 

𝜇(𝑥) = 𝑒∫ 𝑝(𝑥)𝑑𝑥 

𝜇(𝑥) = 𝑒∫ −2𝑥 𝑑𝑥 = 𝑒−𝑥2
 

 
Original:  

(2𝑥𝑦3 − 2𝑥3𝑦3 − 4𝑥𝑦2 + 2𝑥)𝑑𝑥 + (3𝑥2𝑦2 + 4𝑦)𝑑𝑦 = 0 
 
Multiply by integrating factor 

𝑒−𝑥2
(2𝑥𝑦3 − 2𝑥3𝑦3 − 4𝑥𝑦2 + 2𝑥)𝑑𝑥 + 𝑒−𝑥2

(3𝑥2𝑦2 + 4𝑦)𝑑𝑦 
 
 

𝑀 = 𝑒−𝑥2
(2𝑥𝑦3 − 2𝑥3𝑦3 − 4𝑥𝑦2 + 2𝑥) 



𝑀𝑦 = 𝑒−𝑥2
(6𝑥𝑦2 − 6𝑥3𝑦2 − 8𝑥𝑦) 

 

𝑁 = 𝑒−𝑥2
(3𝑥2𝑦2 + 4𝑦) 

𝑁𝑥 = 𝑒−𝑥2
(−2𝑥)(3𝑥2𝑦2 + 4𝑦) + 𝑒−𝑥2

(6𝑥𝑦2) = 𝑒−𝑥2
(−6𝑥3𝑦2 − 8𝑥𝑦 + 6𝑥𝑦2) 

 

∫ 𝑒−𝑥2
(2𝑥𝑦3 − 2𝑥3𝑦3 − 4𝑥𝑦2 + 2𝑥)𝑑𝑥 

 

= ∫(−2𝑥)𝑒−𝑥2
(−𝑦3 + 𝑥2𝑦3 + 2𝑦2 − 1)𝑑𝑥 = 

𝑢 = (−𝑦3 + 𝑥2𝑦3 + 2𝑦2 − 1), 𝑑𝑣 = (−2𝑥𝑒−𝑥2
)𝑑𝑥 

 

𝑑𝑢 = 2𝑥𝑦3𝑑𝑥, 𝑣 = 𝑒−𝑥2
 

 

𝑒−𝑥2
(−𝑦3 + 𝑥2𝑦3 + 2𝑦2 − 1) − ∫ 2𝑥𝑦3 𝑒−𝑥2

𝑑𝑥 = 𝑒−𝑥2
(−𝑦3 + 𝑥2𝑦3 + 2𝑦2 − 1) + 𝑒−𝑥2

+ 𝑔(𝑦) 

 
 

∫ 𝑒−𝑥2
(3𝑥2𝑦2 + 4𝑦)𝑑𝑦 = 𝑒−𝑥2

(𝑥2𝑦3 + 2𝑦2) + ℎ(𝑥) 

 
 

∫ 𝑀𝑑𝑥 = −𝑦3𝑒−𝑥2
+ 𝑥2𝑦3𝑒−𝑥2

+ 2𝑦2𝑒−𝑥2
− 𝑒−𝑥2

+ 𝑒−𝑥2
+ 𝑔(𝑦) 

 

∫ 𝑁𝑑𝑦 = 𝑥2𝑦3𝑒−𝑥2
+ 2𝑦2𝑒−𝑥2

+ ℎ(𝑥) 

 

𝑓(𝑥, 𝑦) = 𝑥2𝑦3𝑒−𝑥2
+ 2𝑦2𝑒−𝑥2

− 𝑒−𝑥2
+ 𝐾 

 

𝑓𝑥 = 2𝑥𝑦3𝑒−𝑥2
+ 𝑥2𝑦3(−2𝑥)𝑒−𝑥2

+ 2𝑦2(−2𝑥)𝑒−𝑥2
− (−2𝑥)𝑒−𝑥2

 
 

= 𝑒−𝑥2
(2𝑥𝑦3 − 2𝑥3𝑦3 − 4𝑥𝑦2 + 2𝑥) 

 

𝑓𝑦 = 3𝑥2𝑦2𝑒−𝑥2
+ 4𝑦𝑒−𝑥2

= 𝑒−𝑥2
(3𝑥2𝑦2 + 4𝑦) 

 
Generally only worry about these if the problem asks for it: 
Determine if the equation is exact, and if it is not, find an appropriate integrating factor. 
 
More Numerical approaches 
 

Modified Euler’: 𝑦𝑛+1 = 𝑦𝑛 + ℎ𝑓 [𝑡𝑛 +
1

2
ℎ, 𝑦𝑛 +

1

2
ℎ𝑓(𝑡𝑛, 𝑦𝑛)] 

Takes the approximation used to estimate the slope at the midpoint of the interval. 
 

𝑥0 = 1, 𝑦0 = 2, Δ𝑥 = 0.1 
Use in Euler’s method, estimate the slope at 1.05 and estimate the y-value at the midpoint, and then 
use that to estimate the slope over the whole interval. (as similar to the midpoint in Reimann sums) 



 
Improved Euler’s: (Trench, page 110) 
Calculate the slope at both endpoints (1,2) and at (1.1, estimate using Euler’s for 𝑦11), and then average 
them. (more similar to the trapezoidal rule). 
 

𝑚𝑛 =
𝑓(𝑥𝑛, 𝑦𝑛(𝑥𝑛)) + 𝑓(𝑥𝑛+1, 𝑦(𝑥𝑛+1))

2
 

 
𝑦𝑛+1 = 𝑦𝑛 + 𝑚𝑛(Δ𝑥) = 𝑦𝑛 + 𝑚𝑛ℎ 

 
Runge-Kutta has the idea to estimate at the initial endpoint, at the midpoint of the interval in two 
different ways, and then also at the other endpoint, and then produce a weighted average of all 4 values 
with the middle values being more highly weighted. 
 

Runge-Kutta: 𝑦𝑛+1 = 𝑦𝑛 + ℎ (
𝑘𝑛1+2𝑘𝑛2+2𝑘𝑛3+𝑘𝑛4

6
),  

𝑘𝑛1 = 𝑓(𝑡𝑛, 𝑦𝑛), 𝑘𝑛2 =  𝑓 (𝑡𝑛 +
1

2
ℎ, 𝑦𝑛 +

1

2
ℎ𝑘𝑛1) ,

𝑘𝑛3 =  𝑓 (𝑡𝑛 +
1

2
ℎ, 𝑦𝑛 +

1

2
ℎ𝑘𝑛2) , 𝑘𝑛4 = 𝑓(𝑡𝑛 + ℎ, 𝑦𝑛 + ℎ𝑘𝑛3) 

 
These are the end of Exam #1 material. 
 
Review for the exam. 
Solutions for first order differential equations: methods: 
 Linear (integrating factor) 
 Separable equations 
 Exact 
 Bernoulli – makes a non-linear into a linear 
 Homogeneous – makes a non-separable, separable 
 Exact integrating factor – makes a non-exact equation into an exact equation 
 
Existence and uniqueness – (2.4?) – where is the differential equation defined, where does a solution 
exist, intervals of validity. 
 
Euler’s method 
Runge-Kutta 
Direction Fields 
Autonomous Equations (only depend on the function variable 𝑦′ = 𝑦(𝑦 − 1)). They are always 
separable. They require partial fractions to solve. 
 
Something super basic: test a solution in a differential equation to verify it is solution. Classifying 
differential equations by order, linearity, ordinary/partial. 
 
Expect that at least one problem will have you solve for a constant.  
In Bernoulli, Homogeneous and Exact Integrating Factor problems, I may only ask you to complete the 
problem part way: turn the Bernoulli into a linear (and then stop), homogeneous until it is separable, 
exact with integrating factor may have you stop when you can show that it is exact.  
 



Application problem: probably 99% chance there will be a tank problem on the exam. Population 
exponential growth or decay, or Newton’s Law of cooling, or similar.  
 
 
Review the quizzes and written homeworks to understand my problem selection. The handouts also 
good. 
 
Leave if you can’t integrate as: 

∫ 𝑓(𝑡)𝑑𝑡
𝑥

𝑥0

+ 𝐶 

 


