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Tank problems continued 
Bernoulli equations 
Homogeneous Equations 
 
Concentration/Tank problems 
 

𝑑𝐴

𝑑𝑡
= 𝑅𝑎𝑡𝑒𝑖𝑛 − 𝑅𝑎𝑡𝑒𝑜𝑢𝑡 

 
Example. 
Our tank originally contains 400 L of pure water. A mixture of 16g/L of sugar flows into the tank at a rate 
of 4 L/sec. The well-stirred mixture flows out at the same rate. Find an expression for the amount of 
sugar in the tank at any time t.  And what amount of sugar is the equilibrium level? 
 

𝑑𝐴

𝑑𝑡
= 𝑅𝑎𝑡𝑒𝑖𝑛 − 𝑅𝑎𝑡𝑒𝑜𝑢𝑡 

 

𝑅𝑎𝑡𝑒𝑖𝑛 =
16𝑔

𝐿
×

4𝐿

𝑠
=

64𝑔

𝑠
 

 

𝑅𝑎𝑡𝑒𝑜𝑢𝑡 =
𝐴

400𝐿
×

4𝐿

𝑠
=

𝐴

100

𝑔

𝑠
 

 
𝑑𝐴

𝑑𝑡
= 64 −

𝐴

100
 

 
𝑑𝐴

𝑑𝑡
= −

1

100
(𝐴 − 6400) 

 
𝑑𝐴

𝐴 − 6400
= −

1

100
𝑑𝑡 

 

∫
𝑑𝐴

𝐴 − 6400
= ∫ −

1

100
𝑑𝑡 

 

ln|𝐴 − 6400| = −
1

100
𝑡 + 𝐶 

 

𝐴 − 6400 = 𝑒−
1

100
𝑡+𝐶 = 𝐴 − 6400 = 𝑒−

1
100

𝑡𝑒𝐶 = 𝐴0𝑒−
1

100
𝑡 

 

𝐴(𝑡) = 6400 + 𝐴0𝑒−
1

100
𝑡 

For pure water, that means there is no sugar in the tank. 
𝐴(0) = 0 

 

0 = 6400 + 𝐴0𝑒−
1

100
(0)

 
𝐴0 = −6400 



 

𝐴(𝑡) = 6400 − 6400𝑒−
1

100
𝑡 

 
What is the equilibrium amount of sugar in the tank.  
 

lim
𝑡→∞

6400 − 6400𝑒−
1

100
𝑡 = 6400 

 
6400 g of sugar. 
 
This is an example of same rate in/same rate out. 
 
Example. 
Our tank is 1000 L, and originally contains 400 L of pure water. A mixture of 16g/L of sugar flows into the 
tank at a rate of 4 L/sec. The well-stirred mixture flows out at the rate of 2 L/sec. Find an expression for 
the amount of sugar in the tank at any time t. How long until the tank overflows? What is the amount of 
sugar in the tank at that time? 
 

𝑑𝐴

𝑑𝑡
= 𝑅𝑎𝑡𝑒𝑖𝑛 − 𝑅𝑎𝑡𝑒𝑜𝑢𝑡 

 

𝑅𝑎𝑡𝑒𝑖𝑛 =
16𝑔

𝐿
× 4

𝐿

𝑠
= 64

𝑔

𝑠
 

 

𝑅𝑎𝑡𝑒𝑜𝑢𝑡 =
𝐴

400 + 2𝑡
×

2𝐿

𝑠
=

2𝐴

400 + 2𝑡

𝑔

𝑠
=

𝐴

200 + 𝑡
 

 
𝑑𝐴

𝑑𝑡
= 64 −

𝐴

200 + 𝑡
 

 

𝐴′ + (
1

200 + 𝑡
) 𝐴 = 64 

 

𝜇 = 𝑒∫
1

200+𝑡
𝑑𝑡 = 𝑒ln|200+𝑡| = 200 + 𝑡 

 
(200 + 𝑡)𝐴′ + 𝐴 = 64(200 + 𝑡) 

 
[(200 + 𝑡)𝐴]′ = 64(200 + 𝑡) 

 

(200 + 𝑡)𝐴 = 64 ∫ 200 + 𝑡𝑑𝑡 = 64 [200𝑡 +
1

2
𝑡2] = 12800𝑡 + 32𝑡2 + 𝐶 

 
(200 + 𝑡)𝐴 = 12800𝑡 + 32𝑡2 + 𝐶 

 

𝐴 =
12800𝑡 + 32𝑡2 + 𝐶

200 + 𝑡
 

 



(200 + 𝑡)𝐴 = 64 ∫ 200 + 𝑡𝑑𝑡 

 
𝑢 = 200 + 𝑡 

𝑑𝑢 = 𝑑𝑡 

64 ∫ 𝑢𝑑𝑢 = 64 (
1

2
𝑢2) + 𝐶 =

64

2
(200 + 𝑡)2 + 𝐶 

 
(200 + 𝑡)𝐴 = 32(200 + 𝑡)2 + 𝐶 

 

𝐴 =
32(200 + 𝑡)2

200 + 𝑡
+

𝐶

200 + 𝑡
 

 

𝐴(𝑡) = 32(200 + 𝑡) +
𝐶

200 + 𝑡
 

 
𝐴(0) = 0 

0 = 32(200 + 0) +
𝐶

200 + 0
 

−6400 =
𝐶

200
 

 
𝐶 = −1280000 = −1.28 × 106 

 

𝐴(𝑡) = 32(200 + 𝑡) − 1.28 ×
106

200 + 𝑡
 

 

Amount of time until the tank overflows 
1000−400

2
= 300 𝑠 

 

𝐴(300) = 32(200 + 300) − 1.28 ×
106

200 + 300
= 13,440 𝑔 

 
Bernoulli equations. 
These are non-linear equations but they look somewhat similar to linear equations. And they can be 
transformed into linear equations with an appropriate substitution/integrating factor. 
 

𝑦′ + 𝑝(𝑡)𝑦 = 𝑓(𝑡)𝑦𝑛 
 
The basic process involves multiplying the whole equation by something (integrating factor), and then 
make a substitution, which will make the equation a linear equation. 
 

1. (1 − 𝑛)𝑦−𝑛 multiply whole equation by this expression 
n is a constant from the right side of the equation, the power of y 

2. Make a substitution 𝑧 = 𝑦1−𝑛, 
𝑑𝑧

𝑑𝑡
= (1 − 𝑛)𝑦−𝑛 

 
At that point the equation will be linear. 
 
Example. 



𝑑𝑦

𝑑𝑡
+ 2𝑡𝑦 = 𝑡𝑦2 

 
𝑦′ + 2𝑡𝑦 = 𝑡𝑦2 

1. 𝑛 = 2, (1 − 2)𝑦−2 = −1𝑦−2 = −𝑦−2 
Multiply the whole equation by this expression. 
 

−𝑦−2𝑦′ − 2𝑡𝑦(𝑦−2) = −𝑡 
 

−𝑦−2𝑦′ − 2𝑡(𝑦−1) = −𝑡 
 

2. The substitute for the y variable where the linear term used to be. 
𝑧 = 𝑦−1 

𝑧′ =
𝑑𝑧

𝑑𝑡
= −1(𝑦−2)𝑦′ = −𝑦−2𝑦′ 

 
𝑧′ − 2𝑡𝑧 = −𝑡 

 
This equation is now linear. 
 

𝜇 = 𝑒∫ −2𝑡𝑑𝑡 = 𝑒(−𝑡2)  
 

𝑒−𝑡2
𝑧′ − 2𝑡𝑒−𝑡2

𝑧 = −𝑡𝑒−𝑡2
 

 

(𝑒−𝑡2
𝑧)

′
= −𝑡𝑒−𝑡2

 

 

𝑒−𝑡2
𝑧 = ∫ −𝑡𝑒−𝑡2

𝑑𝑡 

 

𝑢 = −𝑡2, 𝑑𝑢 = −2𝑡𝑑𝑡,
1

2
𝑑𝑢 = −𝑡𝑑𝑡 

 

𝑒−𝑡2
𝑧 =

1

2
𝑒−𝑡2

+ 𝐶 

 

𝑒𝑡2
𝑒−𝑡2

𝑧 = 𝑒𝑡2
(

1

2
𝑒−𝑡2

+ 𝐶) 

 

𝑧 =
1

2
+ 𝐶𝑒𝑡2

 

 
1

𝑦
=

1

2
+ 𝐶𝑒𝑡2

 

 
You can solve this for y if you want, but that isn’t necessary (some problems will be more 
difficult). 
 

 



Homogeneous equations 
Converts into separable equations. 
 

One version is solved for 
𝑑𝑦

𝑑𝑥
= 𝑓(𝑥, 𝑦) = −

𝑀(𝑥,𝑦)

𝑁(𝑥,𝑦)
 

One version is in differential form 𝑀(𝑥, 𝑦)𝑑𝑥 + 𝑁(𝑥, 𝑦)𝑑𝑦 = 0 
 
If problem is homogeneous: If we replace 𝑦 → 𝑡𝑦, 𝑎𝑛𝑑 𝑥 → 𝑡𝑥, then the t’s will cancel out (in the first 
form), or completely factor out (in the differential form). The degree of the homogeneous equation is 
described in terms of the power of t that comes out. 
 
This tends to mean that both M and N are polynomials of the same degree. 
 
Example. 

(𝑥 − 𝑦)𝑑𝑥 + 𝑥𝑑𝑦 = 0 
 

𝑥𝑑𝑦 = (𝑦 − 𝑥)𝑑𝑥 
𝑑𝑦

𝑑𝑥
=

𝑦 − 𝑥

𝑥
 

 
Test to see if it’s homogeneous. 

𝑡𝑦 − 𝑡𝑥

𝑡𝑥
=

𝑡(𝑦 − 𝑥)

(𝑡)(𝑥)
=

𝑦 − 𝑥

𝑥
 

 
Since I cancelled one power of t, this is homogeneous, degree 1. 
 

(𝑡𝑥 − 𝑡𝑦)𝑑𝑥 + 𝑡𝑥𝑑𝑦 = 0 
 

𝑡(𝑥 − 𝑦)𝑑𝑥 + 𝑡(𝑥)𝑑𝑦 = 0 
𝑡[(𝑥 − 𝑦)𝑑𝑥 + 𝑥𝑑𝑦] = 0 

 
This is homogeneous degree 1 because I factored out one power of t. 
 
Trick here is to substitute 𝑦 = 𝑣𝑥 
𝑣 is a function of x, and the extra x will cancel, and leave me with an equation in 𝑣 which is separable. 
 

𝑦′ = 𝑣′𝑥 + 𝑣 
 

𝑑𝑦

𝑑𝑥
=

𝑦 − 𝑥

𝑥
 

 

𝑣′𝑥 + 𝑣 =
𝑣𝑥 − 𝑥

𝑥
=

𝑥(𝑣 − 1)

𝑥
= 𝑣 − 1 

 
𝑣′𝑥 + 𝑣 = 𝑣 − 1 

 
𝑣′𝑥 = −1 

 



𝑑𝑣

𝑑𝑥
𝑥 = −1 

 

𝑑𝑣 = −
1

𝑥
𝑑𝑥 

 

∫ 𝑑𝑣 = ∫ −
1

𝑥
𝑑𝑥 

 
𝑣 = − ln|𝑥| + 𝐶 

 

𝑦 = 𝑣𝑥 → 𝑣 =
𝑦

𝑥
 

 
𝑦

𝑥
= − ln|𝑥| + 𝐶 

 
𝑦 = −𝑥 ln|𝑥| + 𝐶𝑥 

 
 
 
More examples. 
 
Bernoulli example. 
 

𝑦′ +
𝑦

𝑥
= 𝑥√𝑦 

 
1. (1 − 𝑛)𝑦−𝑛 

𝑛 =
1

2
 

 

𝑦′ +
𝑦

𝑥
= 𝑥𝑦

1
2 

 

(1 −
1

2
) 𝑦

−(
1
2

)
=

1

2
𝑦

−(
1
2

)
 

 
 

1

2
𝑦

−(
1
2

)
𝑦′ + (

1

𝑥
) 𝑦

1

2
𝑦

−(
1
2

)
= 𝑥𝑦

1
2

1

2
𝑦

−(
1
2

)
 

 
1

2
𝑦

−(
1
2

)
𝑦′ + (

1

𝑥
)

1

2
𝑦1/2 =

1

2
𝑥 

 

2. 𝑧 = 𝑦
1

2, 𝑧′ =
1

2
𝑦−

1

2𝑦′ 

𝑧′ +
1

2𝑥
𝑧 =

1

2
𝑥 

 



𝜇 = 𝑒∫
1

2𝑥
𝑑𝑥 = 𝑒

1
2 ∫

1
𝑥

𝑑𝑥 = 𝑒
1
2

ln 𝑥 = 𝑒ln √𝑥 = √𝑥 = 𝑥
1
2 

 

𝑥
1
2𝑧′ +

1

2𝑥
𝑥

1
2𝑧 =

1

2
𝑥 (𝑥

1
2) 

 

𝑥
1
2𝑧′ +

1

2
𝑥−

1
2𝑧 =

1

2
𝑥

3
2 

 

(𝑥
1
2𝑧)

′

=
1

2
𝑥

3
2 

 

𝑥
1
2𝑧 = ∫

1

2
𝑥

3
2𝑑𝑥 =

1

2
(

2

5
) 𝑥

5
2 + 𝐶 

 

𝑥
1
2𝑧 =

1

5
𝑥

5
2 + 𝐶 

 

𝑧 =
1

5
𝑥2 + 𝐶𝑥−

1
2 

 

𝑦
1
2 =

1

5
𝑥2 + 𝐶𝑥−

1
2 

 
 
 
Homogeneous example. 

𝑦′ =
𝑥𝑦

𝑥2 − 𝑦2
 

 
𝑦 = 𝑣𝑥, 𝑦′ = 𝑣′𝑥 + 𝑣 

 

𝑣′𝑥 + 𝑣 =
𝑥(𝑣𝑥)

𝑥2 − (𝑣𝑥)2
=

𝑥2(𝑣)

𝑥2(1 − 𝑣2)
=

𝑣

1 − 𝑣2
 

 

𝑣′𝑥 + 𝑣 =
𝑣

1 − 𝑣2
 

 

𝑣′𝑥 =
𝑣

(1 − 𝑣2)
− 𝑣 

 

𝑣′𝑥 =
𝑣

(1 − 𝑣2)
−

𝑣(1 − 𝑣2)

1 − 𝑣2
=

𝑣 − 𝑣(1 − 𝑣2)

1 − 𝑣2
=

(𝑣 − 𝑣 + 𝑣3)

1 − 𝑣2
=

𝑣3

1 − 𝑣2
 

 
𝑑𝑣

𝑑𝑥
(𝑥) =

𝑣3

1 − 𝑣2
 

 
(1 − 𝑣2)𝑑𝑣

𝑣3
=

1

𝑥
𝑑𝑥 

 



(
1

𝑣3
−

𝑣2

𝑣3) 𝑑𝑣 =
1

𝑥
𝑑𝑥 

 

(𝑣−3 −
1

𝑣
) 𝑑𝑣 =

1

𝑥
𝑑𝑥 

 

∫ (𝑣−3 −
1

𝑣
) 𝑑𝑣 = ∫

1

𝑥
𝑑𝑥 

 

= −
1

2
𝑣−2 − ln|𝑣| = ln|𝑥| + 𝐶 

 

𝑦 = 𝑣𝑥 → 𝑣 =
𝑦

𝑥
 

 

−
1

2
(

𝑦

𝑥
)

−2

+ ln |
𝑦

𝑥
| = ln|𝑥| + 𝐶 

 

−
1

2
(

𝑥

𝑦
)

2

+ ln |
𝑦

𝑥
| = ln|𝑥| + 𝐶 

 

−
𝑥2

2𝑦2
+ ln|𝑦| − ln|𝑥| = ln|𝑥| + 𝐶 

 

−
𝑥2

2𝑦2
+ ln|𝑦| = 2 ln|𝑥| + 𝐶 

 
Exact Equations. 
 

(2𝑥𝑦 − 9𝑥2)𝑑𝑥 + (2𝑦 + 𝑥2 + 1)𝑑𝑦 = 0 
 

𝑀(𝑥, 𝑦) = 2𝑥𝑦 − 9𝑥2 
 

𝑁(𝑥, 𝑦) = 2𝑦 + 𝑥2 + 1 
 
 
There is a function 𝜙 (or 𝜓) of both x and y that if you take the partial derivative of the function with 
respect to x, you get M(x,y), and if you take the partial derivative of the function with respect to y, you 
get N(x,y). 
 
A partial derivative is a derivative of a multivariable function where you treat all variables except the 
one you are interested in as constants. So if you have a function 𝑓(𝑥, 𝑦), and you take the derivative 

with respect to x, 
𝜕𝑓

𝜕𝑥
, then the y-variable is treated as a constant, and you take the derivative of x 

“normally”. 
 

𝑓(𝑥, 𝑦) = 𝑥2 + 2𝑥𝑦 − 𝑦3 + 𝑦𝑒3𝑥 
 



𝜕𝑓

𝜕𝑥
= 2𝑥 + 2𝑦(1) − 0 + 𝑦(3𝑒3𝑥) = 2𝑥 + 2𝑦 + 3𝑦𝑒3𝑥 

 
𝜕𝑓

𝜕𝑦
= 0 + 2𝑥(1) − 3𝑦2 + 𝑒3𝑥(1) = 2𝑥 − 3𝑦2 + 𝑒3𝑥 

 
The same principles apply in the anti-derivative. We treat all other variables as constant, and only work 
on one at a time. 
 

∫ 2𝑥 + 2𝑦 + 3𝑦𝑒3𝑥𝑑𝑥 = ∫ 2𝑥𝑑𝑥 + ∫ 2𝑦𝑑𝑥 + ∫ 3𝑦𝑒3𝑥𝑑𝑥 = ∫ 2𝑥𝑑𝑥 + 2𝑦 ∫ 𝑑𝑥 + 𝑦 ∫ 3𝑒3𝑥𝑑𝑥 

 
= 𝑥2 + 2𝑦(𝑥) + 𝑦(𝑒3𝑥) + 𝑔(𝑦) 

I can’t recover any constants, but also I can’t recover any terms that contained only y (since I was 
integrating with x). 
 

∫ 2𝑥 − 3𝑦2 + 𝑒3𝑥𝑑𝑦 = ∫ 2𝑥𝑑𝑦 − ∫ 3𝑦2𝑑𝑦 + ∫ 𝑒3𝑥𝑑𝑦 = 2𝑥 ∫ 𝑑𝑦 − ∫ 3𝑦2𝑑𝑦 + 𝑒3𝑥 ∫ 𝑑𝑦 = 

 
2𝑥(𝑦) − 𝑦3 + 𝑒3𝑥(𝑦) + ℎ(𝑥) 

 
What is f(x,y) from this process? 
 
Any terms that contain both x and y are in f(x,y), and any terms with one variable with only appear in 
one of the antiderivatives. 
 

𝑓(𝑥, 𝑦) = 
In both antiderivatives 

2𝑥𝑦 + 𝑦𝑒3𝑥 
In the x-only antiderivative 

+𝑥2 
In the y-only antiderivative 

−𝑦3 
 

𝑓(𝑥, 𝑦) = 2𝑥𝑦 + 𝑦𝑒3𝑥 + 𝑥2 − 𝑦3 + 𝐾 
 
I can’t recover the constant unless I have an initial condition. 
 

2𝑥𝑦 + 𝑦𝑒3𝑥 + 𝑥2 − 𝑦3 + 𝐾 = 0 
 
Back to our problem: 

(2𝑥𝑦 − 9𝑥2)𝑑𝑥 + (2𝑦 + 𝑥2 + 1)𝑑𝑦 = 0 
 

Treat 𝑀(𝑥, 𝑦) =
𝜕𝑓

𝑑𝑥
 and 𝑁(𝑥, 𝑦) =

𝜕𝑓

𝜕𝑦
. 

 
 

∫ 𝑀(𝑥, 𝑦)𝑑𝑥 = ∫ 2𝑥𝑦 − 9𝑥2𝑑𝑥 = 𝑦 ∫ 2𝑥𝑑𝑥 − 9 ∫ 𝑥2𝑑𝑥 = 𝑥2𝑦 −
9

3
𝑥3 + 𝑔(𝑦) 



 

∫ 𝑁(𝑥, 𝑦)𝑑𝑦 = ∫ 2𝑦 + 𝑥2 + 1𝑑𝑦 = ∫ 2𝑦 𝑑𝑦 + 𝑥2 ∫ 𝑑𝑦 + ∫ 1𝑑𝑦 = 𝑦2 + 𝑥2𝑦 + 𝑦 + ℎ(𝑥) 

 
 
 

𝑓(𝑥, 𝑦) = 𝑥2𝑦 − 3𝑥3 + 𝑦2 + 𝑦 + 𝐾 
 

𝑥2𝑦 − 3𝑥3 + 𝑦2 + 𝑦 + 𝐾 = 0 
 
So this implicit function satisfies our differential equation. 
 
Next time, we’ll do another example. And we’ll look at integrating factors that can make some equations 
into exact equations even if they aren’t to start with.  
 
Return to numerical methods (Runge-Kutta). 
 
 
 
 
 
 
 
 
 
 
 

 
  
 
 
 
 
 


