
Lecture 12 
 
Other one-sample tests 
Our hypothesis tests come with certain assumptions.  What is we don’t meet those assumptions? 
Suppose we make a normal probability plot of our data and it’s not normal? What if our proportion 
problem doesn’t meet our test condition? 
 
Let’s look at the continuous case first. As we’ve seen, one strategy for dealing with distributions that are 
not normal is to increase the sample size. As the sample size increases, the central limit theorem tells us 
the sampling distribution will become more normal regardless of the underlying distribution.  But what 
if that isn’t possible? 
 
Another option is to perform a transformation of the variables. Sometimes a variable may not be 
distributed sufficiently normally, but the log of it will be. Applying logarithms, powers (roots or other 
exponents), and other transformations may improve the normality in some cases.  Obviously, this only 
works when raw data is available, and you may need to test different types of transformations to see if 
it is able to improve the appearance of your normal probability plot. 
 
We’ve gotten a glimpse of some computational methods, which we will return to later in the course. 
There are also non-parametric techniques we will also look at later on. But, we do have some options for 
dealing with one-sample parameters in specific situations.  It is to those cases that we want to turn now. 
 
Two of the additional cases we’ll look at use the 𝜒2 distribution. 
 

 
 



The 𝜒2 distribution, for low degrees of freedom is strongly right skewed.  We will encounter it again 
when we look at tests of independence later in the course, but we can also apply it here for tests on 
standard deviations, and tests on means from Poisson distributions. 
 
Let’s start with the standard deviation test. 
 
In a sample of 15 analgesic drug abusers, the standard deviation of serum creatinine is found to be 
0.435.  The standard deviation of serum creatinine in the general population is 0.40. Determine if the 
variance of serum creatinine among analgesic abusers differs from the variance of serum creatinine in 
the general population. 
 
We begin by setting up our hypothesis tests. Since standard deviation and variance are related, a test of 
standard deviation is equivalent to a test of variance. 
 

𝐻0: 𝜎 = 0.40 
𝐻𝑎: 𝜎 ≠ 0.40 

 
I have used the standard deviation in my statements since those are the values provided in the problem. 
If you make your hypothesis statement in terms of variance here, you’ll need to remember to square the 
population value.  
 

𝐻0: 𝜎
2 = 0.16 

𝐻𝑎: 𝜎
2 ≠ 0.16 

 
We need to calculate a test statistic. For this test, the test statistic is 
 

𝜒2 =
(𝑛 − 1)𝑠2

𝜎2
 

 
 

In this case, we find 𝜒2 =
(15−1)(0.435)2

(0.40)2
≈ 16.557… The degrees of freedom we use with this test is 

basically the same as we’d use for the t-test, 𝑛 − 1. 
 
Since this is a two-tailed test, we’ll need to consider the rejection region on both ends of the distribution 

𝜒14,0.025
2  and 𝜒14,0.975

2  as the boundary conditions, or find the P-value for the test.  

 
The boundaries are 

 



Using the rejection region method, we see that our test statistic 16.56 falls in between 5.629 and 26.12, 
and therefore does not fall into the rejection region.  We must fail to reject the null hypothesis. 
 
Alternatively, if we look at the P-value, even if this was a one-tailed test, we see that the P-value is still 
greater than any common significance level. 
 

 
 
Our conclusion, in context then, is that we can find no meaningful difference between our data’s 
standard deviation and the general population’s standard deviation. 
 
We can also use the 𝜒2 distribution to conduct a test of means in a Poisson distribution.  Consider the 
following example. 
 
A recent occupational safety study found 21 bladder cancer deaths observed among rubber workers. 
Deaths are distributed with a Poisson distribution with an expected value of 18.1. Determine if this is 
sufficient evidence to think that bladder cancer deaths are more common among rubber workers than 
the general population. 
 

𝐻0: 𝜇 = 18.1 
𝐻𝑎: 𝜇 > 18.1 

 
Recall that in the Poisson distribution, we have one parameter (𝜆 or in this case 𝜇), which is both the 
value of the mean and the variance. 
 
Our test statistic is 
 

𝜒2 =
(𝑥 − 𝜇0)

2

𝜇0
 

 
We can conduct this test if 𝜇0 ≥ 10, and with one degree of freedom. 
 

In this case we have 𝜒2 =
(21−18.1)2

18.1
≈ 0.4646… 

 
We can find the P-value by looking at the probability to the right of this value. 



 
 
This is much larger than any common significance level, so we fail to reject the null. This is not enough 
evidence to think bladder cancer is more common among rubber workers than the general population. 
 
The last case we want to look at is the case where our proportion problem fails our test for the normal 
approximation. We’ll need to use the binomial approximation directly in this case. (Recall that we also 
had a standard for approximating a binomial distribution as a Poisson distribution. This is an option to 
consider, but we’ll omit it here.) 
 
Example. Based on vital statistics, 20% of all deaths can be attributed to some form of cancer Of the 13 
deaths occurring among 55-64 year old males in a nuclear power plant, 5 are from cancer. Is their death 
rate from cancer higher than the expected rate? 
 
This is a very small sample for a proportion problem, and it fails our 𝑛𝑝𝑞 test.  13(. 2)(. 8) = 2.08 ≪ 10. 
So, we have to look at the exact binomial distribution. 
 

𝐻0: 𝑝 = 0.2 
𝐻𝑎: 𝑝 > 0.2 

 
If the population proportion is 0.2, and we are doing 13 trials, we want the probability that we get 5 or 
more occurrences of cancer.  The simplest way to do this is to use the cumulative distribution up to 4, 
and then subtract from 1. 
 

𝑃(𝑋 ≥ 5) = 1 − 𝑃(𝑋 ≤ 4) = 1 − 0.9008… = 0.09913… 
 
If we are using the standard significance level of 𝛼 = 0.05, then this P-value is too large, and we must 
fail to reject the null hypothesis.  However, if we had set our significance level to 0.10, then this would 
be small enough to reject the null.  This is why we should set our significance level well in advance of 
conducting our test. It’s very tempting at the end to adjust the significance level in “borderline” cases to 
make a test significant when it should not be. 
 
We can use an exact distribution to do the Poisson problem above if we wanted.  As we develop more 
hypothesis tests, it’s useful to consider the benefits and drawbacks of each, and when to apply them: 
what conditions to check, etc., and how they differ from other similar tests.  I encourage you to do this.  



Next time, we’re going to add the two-sample cases, and there is a great variety of different approaches 
to the two-sample t-test with special applications. 
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