
Lecture 7 
 
Go over Exam #1 
 
Sampling Distributions 
Now that we have some machinery under our belts, we can begin to approach the topic of inferential 
statistics.  How do we take our samples and understand something about the whole population?  How 
good are our estimates? 
 
Estimators – biased vs. unbiased 
A point estimate is a single value that estimates a population parameter. Point estimates are easy to 
understand, but they lack information about how accurate they are likely to be. In inferential statistics, 
we usually prefer a confidence interval, which is centered on a point estimate, but includes a margin of 
error that expresses some information about how far away from the true value of the parameter we are 
likely to be. You may see this interval expressed as 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 ± 𝑚𝑎𝑟𝑔𝑖𝑛 𝑜𝑓 𝑒𝑟𝑟𝑜𝑟, or as an interval 
(𝑙𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑, 𝑢𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑). The first form emphasizes the point estimate, the second form 
emphasizes the range of possible values. While these are mathematically equivalent, in this course we 
will prefer the interval notation. 
 
Estimators at the center of these intervals come in many flavors. Some estimators are unbiased (the 
ones we use routinely in statistics are used precisely because they are unbiased). Some estimators are 
biased.  
 
An example of a biased estimator is the range.  The range is especially problematic because it tends to 
grow with the sample size.  One of the reasons we discussed two formulas for the standard deviation is 
because when we use the population formula on a sample, it tends to underestimate the true 
population standard deviation.  Using 𝑛 − 1 instead of 𝑛 makes the estimate unbiased. 
 
Some population parameters may have several methods for generating an estimate. For example, we 
can estimate a population mean with a sample mean or a sample median. Both are unbiased, but we 
use the mean in part because this estimator has a small variance than the median. So, our choice of 
estimators generally must be both unbiased, and have the smallest variance when we have multiple 
methods. 
 
When we estimate parameters from samples, we have a couple of methods we can use to obtain 
estimates.  One method is called the Maximum Likelihood Function. A second method is called the 
Method of Moments. 
 
Maximum Likelihood Functions 
The maximum likelihood function is a method of estimating the most likely value of a parameter for a 
probability distribution given a sample of outcomes from that distribution. This handout will discuss in 
broad outlines the general method for constructing a maximum likelihood function and calculating the 
maximum likelihood estimate (MLE) from that function using calculus. 
 
In general terms, we consider the probability distribution 𝑓(𝑥, 𝜆) and collect some samples of data that 
obey the distribution function. For each outcome, we measure the value of 𝑥, with the parameter 𝜆 still 
unknown.  The maximum likelihood function is the product of these outcomes, i.e. 𝐿(𝑓) =



∏ 𝑓(𝑥𝑖, 𝜆)𝑛
𝑖=1 = ∏ 𝑓𝑖(𝜆)𝑛

𝑖=1 .  We will use this function to estimate the most likely value of the parameter 
𝜆.  But, let’s first construct the maximum likelihood function in a specific example. 
 
Construct the maximum likelihood function for the exponential distribution modeling the time between 
events in a Poisson process.  We take several observations and obtain the following wait-times: 𝑥𝑖 =
{5, 2, 1, 4, 2, 6, 3, 1, 4, 2}. 
 
For the first observation, we obtained 𝑥1 = 5.  We substitution this into the exponential distribution 

𝑓(𝑥, 𝜆) = 𝜆𝑒−𝜆𝑥 for 𝑥, obtaining 𝑓1(𝜆) = 𝜆𝑒−5𝜆.  The second observation was 𝑥2 = 2.  So, we substitution 

that into the exponential distribution for 𝑥, obtaining 𝑓2 = 𝜆𝑒−2𝜆.  And so forth.  
 

𝑓3(𝜆) = 𝜆𝑒−𝜆, 𝑓4(𝜆) = 𝜆𝑒−4𝜆, 𝑓5(𝜆) = 𝜆𝑒−2𝜆, 𝑓6(𝜆) = 𝜆𝑒−6𝜆 
 𝑓7(𝜆) = 𝜆𝑒−3𝜆, 𝑓8(𝜆) = 𝜆𝑒−𝜆, 𝑓9(𝜆) = 𝜆𝑒−4𝜆, 𝑓10(𝜆) = 𝜆𝑒−2𝜆 

 

The maximum likelihood function is the product of these expressions: 𝐿(𝑓) = ∏ 𝑓𝑖(𝜆)10
𝑖=1 = 

 

𝐿(𝑓) = 𝜆𝑒−5𝜆 𝜆𝑒−2𝜆 𝜆𝑒−𝜆 𝜆𝑒−4𝜆 𝜆𝑒−2𝜆 𝜆𝑒−6𝜆 𝜆𝑒−3𝜆𝜆𝑒−𝜆𝜆𝑒−4𝜆 𝜆𝑒−2𝜆 

𝐿(𝑓) = 𝜆10𝑒−30𝜆 
 
Because this probability distribution contains exponentials, we convert a product to a sum in the 
exponent.  In this case, the exponential distribution maximum likelihood function becomes  
 

𝐿(𝑓) = ∏ 𝜆𝑒−𝑥𝑖𝜆

𝑛

𝑖=1

= 𝜆𝑛𝑒−𝜆 ∑ 𝑥𝑖
𝑛
𝑖=1  

 
Once we have the Maximum Likelihood function, we take the derivative and set it equal to zero to try to 
find the value of the parameter for which the probability is the greatest. 
 

𝑑𝐿

𝑑𝜆
= 𝑛𝜆𝑛−1𝑒−𝜆 ∑ 𝑥𝑖

𝑛
𝑖=1 − 𝜆𝑛𝑒−𝜆 ∑ 𝑥𝑖

𝑛
𝑖=1 (∑ 𝑥𝑖

𝑛

𝑖=1

) = 0 

 

Factor out 𝜆𝑛−1𝑒𝜆 ∑ 𝑥𝑖
𝑛
𝑖=1 .   

 

𝑛𝜆𝑛−1𝑒−𝜆 ∑ 𝑥𝑖
𝑛
𝑖=1 − 𝜆𝑛𝑒−𝜆 ∑ 𝑥𝑖

𝑛
𝑖=1 (∑ 𝑥𝑖

𝑛

𝑖=1

) = 𝜆𝑛−1𝑒−𝜆 ∑ 𝑥𝑖
𝑛
𝑖=1 (𝑛 − 𝜆 (∑ 𝑥𝑖

𝑛

𝑖=1

)) = 0 

 
It’s possible that 𝜆 is 0, but that’s actually a minimum. The exponential part can never be zero. So the 
parentheses must be zero for the maximum. 
 

𝑛 − 𝜆 (∑ 𝑥𝑖

𝑛

𝑖=1

) = 0 

 



𝑛 = 𝜆 (∑ 𝑥𝑖

𝑛

𝑖=1

) 

 

𝜆 =
𝑛

∑ 𝑥𝑖
𝑛
𝑖=1

 

 
This expression for 𝜆 is the reciprocal of the mean, so another way to express this is  
 

1

𝜆
=

1

𝑛
∑ 𝑥𝑖

𝑛

𝑖=1

 

 
So, if we want to estimate the parameter for the distribution, we take the reciprocal of the mean of the 
sample. I did this derivation using the generic formula, but if we put our data back in, 𝑥̅ = 3, so the best 

estimate for 𝜆 is 
1

3
. 

 
I have a handout on my website (and linked below) that goes through this idea with other distributions. 
If the distribution has more than one parameter to solve for, you will have to take partial derivatives and 
solve both as a system of equations.  Some functions, particularly some discrete distributions, will not 
have a smooth function we can integrate. In such cases, we can find the maximum graphically or by 
other means. 
 
Method of Moments 
The method of moments is another method for deriving methods of parameter estimations. For 
example, we saw for the gamma distribution that 𝜇 = 𝛼𝛽, and 𝜎2 = 𝛼𝛽2. If we have only one 
parameter to estimate, we can estimate it with just the first moment, but if we have two parameters, 
we’ll need two moments and will solve it as a system of equations. 
 

We use the discrete, sample moment for our estimate. 𝐸(𝑋) =
1

𝑛
∑ 𝑥𝑖

𝑛
𝑖=1 , and 𝐸(𝑋2) =

1

𝑛
∑ 𝑥𝑖

2𝑛
𝑖=1 .  And 

recall the first moment is just the mean. The variance short-cut formula is expressed in terms of 
moments: 𝜎2 = 𝐸(𝑋2) − [𝐸(𝑥)]2. 
 
Suppose we have 10 observations from a gamma distribution: 
{1.2, 7.0, 5.6, 3.4, 9.3, 6.2, 4.0, 3.6, 8.2, 7.9}.  The mean is 5.64. The second moment is 37.69. So we set 
𝛼𝛽 = 5.64 and 𝛼𝛽2 = 37.69 − (5.64)2 = 5.88. We do a little algebra. 
 

𝛼𝛽2 = (𝛼𝛽)𝛽 = 5.64𝛽 = 5.88 

𝛽 =
5.88

5.64
= 1.04 

 
And then 𝛼𝛽 = 𝛼(1.04) = 5.64 making 𝛼 = 5.42. 
 
The method of moments and the maximum likelihood function may produce slightly different estimates 
(or formulas) for the parameters. Sometimes they will be the same. To determine which is the best 
estimate to use (assuming the estimator is unbiased), we will need to look at the sampling distribution 
of the estimate to find the one with the smallest variance. 
 



Central Limit Theorem 
Gives us some machinery to estimate how good our estimates of parameters derived from samples are. 
While proving this theorem is beyond the scope of this course, we will discuss the results, and its 
implications for statistical inference. 
 
In some respects, we can think of the central limit theorem as putting a numerical measurement to the 
law of large numbers.  Recall the law of large numbers said that as we take larger and larger empirical 
samples, we get closer and closer to theoretical estimates of probabilities.  For our unbiased estimators, 
we can think of the idea the same way. But the central limit theorem goes further. It allows us to say 
how close to the theoretical value we are likely to be for a sample of a given size. The central limit 
theorem forms the basis for calculating our margins of error for our confidence intervals. 
 
A sampling distribution is the distribution of statistics collected from samples of the same size. For 
instance, suppose that we sample the heights of 10 women and find the mean of their heights. Then we 
take a sample of 10 more women and find the mean of their heights. And so forth for, let’s say 100 
samples of 10.  We can build a histogram of those means.  That is the sampling distribution.  We could 
find the mean of the means, and measure the standard deviation of those sample means. This last value 
is usually referred to as the standard error.  The central limit theorem establishes that the mean of the 
sampling distribution will tend to be centered around the true value of the mean (the parameter), and it 
also establishes the relationship between the population standard deviation and the sampling 
distribution standard deviation (the standard error). 
 

𝜎𝑋̅ = 𝑆𝐸 =
𝜎

√𝑛
 

 
For proportions (whose binomial distributions can be estimated by the normal distribution), we can 
estimate the sample proportion the same way with the mean of the sampling distribution centered 
around the population parameter, and the standard error of the estimate is given by 
 

𝜎𝑝 = 𝑆𝐸 = √
𝑝(1 − 𝑝)

𝑛
 

 
We will experiment with these sampling distributions in the lab this week. 
 
Some statistics, especially for small samples don’t start out looking much like the normal distribution. 
They might have thicker tails (a larger kurtosis) than the normal distribution, or they might be skewed. 
But as the sample sizes get larger, the central limit theorem tells us that the sampling distributions will 
become more normal, and more narrow. 
 
In order to apply the central limit theorem, especially to distributions that don’t start out as normal, we 
usually require that samples sizes be larger than a certain size.  Different authors of statistics books tend 
to have different rules of thumb. Some books say it’s safe to assume normality for 𝑛 > 30, but some 
distributions need 𝑛 > 50. For this course, we are going to assume we can apply the normal distribution 
safely for 𝑛 > 40. As we will discuss when we talk about confidence intervals in the next lecture, we 
have another distribution, the T-distribution, that can estimate our sampling distributions with when we 
fail to meet that threshold. 
 



Some sampling distributions don’t have good theory to support specific measures for their variability. 
For that, we can also rely on simulations, or as we’ll see later in the course, bootstrapping, to make 
estimates of those distributions. 
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