
Lecture 23 
 
Some remarks on Bayesian statistics 
All the statistics we’ve done so far in this course are sometimes referred to as “frequentist” statistics. 
The basic idea is that we collect data, and then we make an inference on that data without making prior 
assumptions about the conclusion. It has been the most popular form of statistics for quite some time, 
but there are critiques of the process.  There is a lot of discussion about P-values, for instance, and the 
consequences of publishing only affirmative results that can be misleading.  It’s worth considering these 
controversies when analyzing studies. 
 
But there is another approach to statistics that comes at some of these issues from a completely 
different perspective. Bayesian statistics is founded in the idea of conditional probability and Bayes’ Rule 
(which we’ve covered in this class).  Recall: 
 

 
 

Bayesian statistics is a branch of statistics that deals with the analysis of uncertain events or phenomena 
using probability theory. It is named after Thomas Bayes, an 18th-century British mathematician, who 
introduced the concept of conditional probability and developed the foundations of Bayesian inference. 
 
In Bayesian statistics, prior information is taken into account as we take in new data.  Typically, some 
prior distribution is assumed, and the new data is taken in to modify the distribution, and this process 
continues each time new data is assimilated. This can be useful if you have reasons to believe something 
about the result (say for physical reasons, from differential equations or other areas of mathematics and 
science), then that information can be incorporated into the analysis.  New data can modify these prior 
assumptions, and lots of data can modify them a lot.  Many Bayesians argue that this process is more 
similar to the way that people actually reason.  The reference [4] linked below is an entire online text 
about Bayesian statistics and they have a more in-depth discussion of the difference between Bayesian 
and frequentist statistics. 
 
In our expression above, 𝑃(𝐴) and 𝑃(𝐵) are the prior probabilities of 𝐴 and 𝐵, respectively, and 
𝑃(𝐴|𝐵) is the likelihood of 𝐴 given 𝐵. 
 
Bayesian statistics provides a framework for updating beliefs based on new evidence. It allows for the 
incorporation of prior knowledge, which can be subjective or based on previous data or studies. As new 
data becomes available, the prior beliefs are updated to form the posterior beliefs, which provide a 
more accurate representation of the uncertainty. 
 
It is worth noting, however, that while the philosophy of Bayesian statistics and frequentist approaches 
are quite different, and lead to different computational methods, nonetheless, in the presence of 
sufficient data, the results of the analysis converge to the same numerical solutions. 
 
One of the advantages of Bayesian statistics is its flexibility in handling complex problems. It allows for 
the incorporation of various sources of uncertainty and can handle small sample sizes effectively. 



Bayesian methods are particularly useful when dealing with parameter estimation, hypothesis testing, 
decision-making under uncertainty, and predictive modeling. 
 
Bayesian statistics has applications in various fields, including medicine, finance, engineering, and 
machine learning. It is used in Bayesian networks, Bayesian hierarchical models, Bayesian regression, 
and Bayesian decision theory, among others. Markov Chain Monte Carlo (MCMC) methods, such as 
Gibbs sampling and Metropolis-Hastings algorithm, are often employed to approximate the posterior 
distribution when analytical solutions are not feasible. 
 
Overall, Bayesian statistics offers a coherent framework for reasoning under uncertainty, allowing for 
the integration of prior knowledge and observed data to make informed decisions and draw robust 
conclusions. 
 
Bayesian statistics can be applied in various ways across different fields. Here are a couple of examples 
illustrating its practical applications: 
 
Drug Efficacy Testing: Suppose a pharmaceutical company wants to test the effectiveness of a new drug. 
They conduct a clinical trial with a sample of patients and collect data on whether the drug successfully 
treats the condition. Bayesian statistics can be used to analyze the results and make inferences. Prior to 
the trial, the company might have some initial beliefs about the drug's efficacy based on previous 
studies or expert opinions, which can be represented as a prior probability distribution. By combining 
this prior distribution with the observed data from the trial, Bayesian analysis can yield a posterior 
distribution that provides updated information on the drug's effectiveness. This posterior distribution 
can then be used to estimate the probability that the drug is effective and make decisions about its 
future development. 
 
Fraud Detection: In the field of fraud detection, Bayesian statistics can be applied to identify potentially 
fraudulent activities. For example, in credit card fraud detection, a Bayesian approach can be used to 
calculate the probability that a given transaction is fraudulent based on various factors such as 
transaction amount, location, time, and past transaction history. Prior probabilities can be derived from 
historical data on fraudulent and non-fraudulent transactions. By combining these priors with the 
observed characteristics of a new transaction, the Bayesian framework can update the probabilities and 
provide a posterior probability of fraud. If the posterior probability exceeds a certain threshold, further 
investigation or action can be taken. 
 
These examples demonstrate how Bayesian statistics enables the incorporation of prior knowledge, 
subjective beliefs, and observed data to make informed decisions and draw reliable conclusions. By 
updating probabilities through Bayesian inference, it allows for continuous learning and updating of 
beliefs as new evidence becomes available. 
 
Bayesian statistics can be applied to probability distributions in various ways, allowing for the 
estimation, updating, and inference of parameters within these distributions. Here are a few ways 
Bayesian methods are applied to probability distributions: 
 
Parameter Estimation: In frequentist statistics, point estimates of parameters are often obtained using 
methods such as maximum likelihood estimation (MLE). In Bayesian statistics, however, parameter 
estimation involves obtaining the posterior distribution of the parameters given the data. This is 
accomplished by specifying a prior distribution that represents our beliefs about the parameters before 



observing any data. The prior distribution is then combined with the likelihood function, which 
represents the probability of the observed data given the parameters, using Bayes' theorem. The 
resulting posterior distribution provides updated information about the parameters, incorporating both 
the prior beliefs and the observed data. 
 
Model Selection and Comparison: Bayesian methods also facilitate model selection and comparison by 
considering probability distributions over models. This is particularly useful when comparing complex 
models with different numbers of parameters or different structural assumptions. Bayesian model 
selection involves calculating the posterior probabilities of different models given the observed data. 
The models' prior probabilities, often based on their complexity or prior knowledge, are combined with 
the likelihoods of the data given each model to obtain the posterior probabilities. The model with the 
highest posterior probability is then considered the most plausible given the data. 
 
Prediction and Forecasting: Bayesian statistics enables probabilistic predictions and forecasting by 
incorporating uncertainty through probability distributions. Rather than providing a single point 
estimate, Bayesian methods yield a predictive distribution that quantifies the uncertainty associated 
with the prediction. This is achieved by combining prior beliefs about the parameters or future data with 
the observed data using Bayes' theorem. The predictive distribution represents the updated knowledge 
or belief about the future outcomes, accounting for both the prior information and the observed data. 
 
In all these applications, Bayesian statistics allows for the representation of uncertainty through 
probability distributions. It provides a coherent framework for reasoning about and updating knowledge 
based on prior beliefs and observed data, resulting in posterior distributions that incorporate both 
sources of information. By using probability distributions, Bayesian methods provide a more 
comprehensive and flexible approach to statistical inference and analysis. 
 
In the context of hypothesis testing, a Bayesian approach provides an alternative to the classical 
frequentist approach. While the frequentist approach focuses on the long-run behavior of statistical 
procedures, the Bayesian approach directly incorporates prior beliefs and updates them based on 
observed data to obtain posterior probabilities. Here's how a Bayesian approach to hypothesis testing 
typically works: 
 
Specify the Hypotheses: In Bayesian hypothesis testing, you start by specifying the competing 
hypotheses. The hypotheses can be represented as probability distributions over the parameters of 
interest. For example, you might have a null hypothesis (H0) and an alternative hypothesis (H1), each 
defined by a probability distribution that captures uncertainty about the parameters under 
consideration. 
 
Assign Prior Probabilities: Next, you need to assign prior probabilities to the competing hypotheses. 
These prior probabilities represent your initial beliefs or subjective judgments about the likelihood of 
each hypothesis being true. The priors can be based on previous data, expert opinions, or non-
informative priors that spread the probability mass evenly. 
 
Collect and Analyze Data: After specifying the hypotheses and priors, you collect and analyze the data. 
The observed data are used to update the prior probabilities, resulting in posterior probabilities that 
reflect your updated beliefs about the hypotheses. 
 



Compute the Bayes Factor or Posterior Odds: To compare the strength of evidence between the 
hypotheses, you can compute the Bayes factor or posterior odds. The Bayes factor quantifies the 
relative support for one hypothesis compared to another by evaluating the ratio of the likelihoods under 
the competing hypotheses. Alternatively, the posterior odds compares the probabilities of the 
hypotheses based on the posterior distributions. 
 
Make a Decision: Based on the computed Bayes factor or posterior odds, you can make a decision about 
which hypothesis is more plausible. A common decision rule is to select the hypothesis with the highest 
posterior probability or the hypothesis with a predefined threshold for substantial evidence. In some 
cases, a decision can also be made by considering the expected utility or loss associated with different 
decisions. 
 
The Bayesian approach to hypothesis testing allows for the incorporation of prior beliefs, which can be 
particularly useful in situations with limited data. It provides a more intuitive interpretation of the 
evidence and allows for continuous updating of beliefs as new data becomes available. However, it's 
important to note that prior specifications can heavily influence the results, and subjective choices in 
assigning priors need to be carefully justified and transparently reported. 
 
Bayesian statistics and frequentist approaches have distinct advantages and disadvantages. Here's a 
comparison of the two: 
 
Advantages of Bayesian Statistics: 
Incorporation of Prior Knowledge: Bayesian statistics allows for the explicit incorporation of prior beliefs 
or knowledge about the parameters or hypotheses of interest. This is particularly useful when dealing 
with limited data or when expert opinions are available. 
 
Uncertainty Quantification: Bayesian methods provide a natural way to quantify uncertainty through 
probability distributions. The posterior distribution represents a comprehensive summary of the 
uncertainty in the parameters or predictions, accounting for both the prior information and the 
observed data. 
 
Flexibility with Small Sample Sizes: Bayesian approaches can yield more stable and reliable estimates 
with small sample sizes by incorporating prior information. The prior distribution acts as a regularizer, 
providing a smoothing effect and reducing the impact of outliers or extreme observations. 
 
Coherent Decision-Making Framework: Bayesian statistics offers a coherent decision-making framework 
by directly providing posterior probabilities. These probabilities can be used to compare hypotheses, 
make decisions, and perform cost-benefit analyses based on the expected utility or loss. 
 
Disadvantages of Bayesian Statistics: 
Subjectivity in Prior Specification: The choice of prior distributions in Bayesian analysis introduces 
subjectivity, as different analysts may have different prior beliefs. This can raise concerns about the 
objectivity and reproducibility of the results. Sensitivity analyses and robustness checks are important to 
assess the impact of prior choices. 
 
Computational Complexity: Bayesian methods often involve complex calculations, especially when 
dealing with high-dimensional models or complex likelihood functions. Approximation techniques like 
MCMC methods can be computationally intensive and time-consuming. 



 
Interpretation Challenges: Bayesian results are often expressed in terms of probability distributions, 
which may be more challenging to interpret for some stakeholders compared to point estimates or p-
values used in frequentist approaches. Clear communication of results is crucial to avoid 
misinterpretation. 
 
Advantages of Frequentist Approaches: 
 
Strong Foundation in Statistical Theory: Frequentist approaches have a well-established theoretical 
foundation and are often associated with rigorous statistical inference. They provide asymptotic 
guarantees and maintain certain properties, such as unbiasedness or consistency, under certain 
assumptions. 
 
Objective Decision Rules: Frequentist approaches provide clear decision rules, such as rejecting or not 
rejecting a null hypothesis based on pre-defined significance levels. This can simplify decision-making 
and facilitate comparisons across different studies or researchers. 
 
Disadvantages of Frequentist Approaches: 
 
Limited Treatment of Uncertainty: Frequentist methods typically provide point estimates or confidence 
intervals that only capture sampling variability, without directly quantifying other sources of uncertainty 
or incorporating prior knowledge. 
 
Lack of Flexibility with Small Sample Sizes: Frequentist methods may yield unreliable estimates or results 
with small sample sizes, as they heavily rely on the observed data without the regularization effect of 
prior information. 
 
Difficulty Handling Complex Models: Frequentist approaches can be less flexible when dealing with 
complex models or when incorporating complex prior information. They may require large sample sizes 
or rely on asymptotic approximations that may not hold in small samples. 
 
In practice, the choice between Bayesian and frequentist approaches depends on various factors, 
including the availability of prior information, the specific research question, the nature of the data, and 
the preferences of the researcher or analyst. Both approaches have their strengths and weaknesses, and 
the choice should be based on a careful consideration of the specific context and requirements of the 
analysis. 
 
Next semester, we’ll continue with the frequentist approach, but we may touch on a couple of 
techniques that were born from Bayesian approaches. 
 
 
Review for final exam 
Review material from Exam #1 and Exam #2 for the comprehensive portion of the Final. 
 
For the recent material, focus on the following: 

• Non-parametric statistics 
o Wilcoxon test for sign test/rank-sum test 
o Non-parametric ANOVA (Kruskal-Wallis, Friedman’s ANOVA) 



o Permutation tests 
o Bootstrapping 

• 𝜒2 tests 
o Goodness-of-fit tests 
o Test of homogeneity 
o Test of independence 
o Fisher Exact Test 

 
The final exam will have the same format as the two previous exams. 
 
Don’t forget to submit the final draft of your final project as well. Be sure to include suggested changes 
from your rough draft into your final version. 
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