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Calculus in Polar Coordinates
Slope of a tangent line

Arc Length
Area of a polar graph, between polar curves

dy _ Gt
dx dx
dt

Recall: x(t) = r cos(t),y(t) = r sin (t), where t can stand in for 8, and r can be r(t).

x(t) = r(t) cos(t),y(t) = r(t) sin(t)
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dy 1'(8)sin(8) +r(6) cos(6)
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Find the slope of the tangent line to polar graph r = 3sin(26) at 6 = "

r'(8) = 6 cos(26)

dy  6cos(20)sin(0) + 3 sin(26) cos (0)
dx 6 cos(26) cos(0) — 3sin(20) sin(6)
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Arc Length
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You may need to apply identities to reduce the problem to something integrable: Pythagorean identities,
power reducing identities, half-angle identities or double angle identities.

Example.
Find the length of arc of a quarter circle (between 0 and g) of radius 6.
r=6
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The whole circumference is C = 2rr = 2m(6) = 127, but only want a % of the circle so 3.

Example.
Find the circumference of the circle r = 4 cos 6.
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Example.

r=2+2cos@
Find the arclength
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Area of polar curve

Suppose | want to find the area of one petal of a rose r = 4 cos 30
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B = | r1(8)=2cos(26) [ showrt
12(8)= 3sin(3.56) [ showr2
2 13(8)= 4cos(38) Show r3
Bmin=0 Bmax=6.283
]
Dynamic graph--turn off boxes above
6=0
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6=0
=1 D Graph r1
D Graph r2
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Limits of integration are where the curve intersects with the origin.

4cos30 =0
cos36 =0
cosa =0

w

,etc.= 360

NIE)

_T[
=22

9_7'[ T T ¢
=% 62

The whole petal will be between — % and %, but we will worry about 0 to % to find just the top half of the

petal, and then we’ll multiply by 2 for symmetry to get the rest.

Area formula for polar coordinates:
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Example.
What is the area of the circle r = 4 cos 87
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Radius of this circle is 2 (center is at 2, diameteris 4), A = nr? = 4m
Area between two polar curves.
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5 r1(8)=2c0s(8) Show r1
RE)=1 Show 12
2 13(8)= 4c05(38) [ showr3
Bmin=0 Bmax= 6283
Dynamic graph--turn off boxes above.
8=0
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D Graph r3
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What is the area inside the circle r = 2 cos 8, but outside the circle r = 1.

Limits will be where the two circles intersect.
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3 ~ r1(6)= 2cos(8) Show r1
2(6)= 1 Show 12
2 r3(8)= 4cos(38) D Show r3
Bmin=0 Bmax=6.283
Dynamic graph--turn off boxes above
/ 8=0
L
-4 -3 -2 (i 0 3 4
6=0
= D Graphrt  71(0) =2
[J craphrz  r2(e)=1
-2
D Graph r3
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Find the area inside bothr = 1 and r = 4 cos 6.

The intersections are at the same place as they were in the previous problems.
Integral 1: go from 0 to g and the outer radiusis r = 1.

Integral 2: got from gto g with the radius of r = 4 cos 6.
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Area of the inner loop of a limacon is also very common.
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B =~ r(®)=1-2cos(® Show r1
r2(0)=1 [ showr2
2 13(6)= 4cos(36) D Show r3
6min=0 6max=6283
1
Dynamic graph--turn off boxes above
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L
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D Graph r2
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