
Lecture 4, MTH 400, Fall 2024 
 
Comparing Data, Faceting/Grouping 
 
In R, there are several methods to filter data based on specific conditions or criteria. Here are some 
commonly used approaches: 

1. Base R Subsetting: In base R, you can use subsetting techniques to filter data based on logical 
conditions. The subset operator [ ] or the subset() function can be used for this purpose. For 
example, to filter a data frame df for rows where a specific variable x meets a condition, you can 
use: 

filtered_data <- df[df$x > 5, ] 
2. dplyr Package: The dplyr package, part of the tidyverse, provides a set of functions for efficient 

data manipulation. It offers the filter() function to filter rows based on specific conditions. Here's 
an example using dplyr: 
 
library(dplyr) 
filtered_data <- filter(df, x > 5) 
 

3. data.table Package: The data.table package provides fast and memory-efficient data 
manipulation capabilities. It offers the [ ] operator and the subset() function similar to base R. 
For example: 
 
library(data.table) 
setDT(df)  # Convert data.frame to data.table 
filtered_data <- df[x > 5] 
 

4. sqldf Package: The sqldf package allows you to write SQL queries to filter data frames. It can be 
useful if you are familiar with SQL syntax. Here's an example: 
 
library(sqldf) 
filtered_data <- sqldf("SELECT * FROM df WHERE x > 5") 
 

5. filter() Function from the stats package: The stats package in R provides the filter() function, 
which can be used to extract subsets of data based on logical conditions. Here's an example: 
 
filtered_data <- filter(df, x > 5) 
 

These are just a few examples of how you can filter data in R. Depending on your specific needs and 
preferences, there may be other packages or methods that can be applied. It's recommended to refer to 
the documentation and examples provided by each package for more detailed usage instructions. 
 
In R, you can use pipelines to create a sequence of data transformation steps, making your code more 
readable, concise, and organized. Pipelines allow you to chain multiple operations together, passing the 
output of one operation as the input to the next. Here's how you can use pipelines in R for data cleaning 
and processing: 

1. dplyr Package: The dplyr package provides a convenient way to create data pipelines using the 
%>% (pipe) operator. This operator takes the output of the previous step and passes it as the first 



argument to the next step. You can use functions like mutate(), filter(), select(), and arrange() to 
perform various data manipulation tasks. Here's an example: 
 

library(dplyr) 
 
cleaned_data <- raw_data %>% 
  mutate(new_variable = old_variable * 2) %>% 
  filter(condition) %>% 
  select(variable1, variable2) %>% 
  arrange(variable1) 
 

2. magrittr Package: The magrittr package provides the %>% operator, similar to dplyr. It allows you 
to create pipelines for data processing. Here's an example: 
 

library(magrittr) 
 
cleaned_data <- raw_data %>% 
  mutate(new_variable = old_variable * 2) %>% 
  filter(condition) %>% 
  select(variable1, variable2) %>% 
  arrange(variable1) 
 

3. data.table Package: The data.table package also supports pipelines using the %>% operator. You 
can perform data manipulation operations using functions like [, :=], [, .()], and [, ..()]. Here's an 
example: 
 

library(data.table) 
library(magrittr) 
 
setDT(raw_data) 
 
cleaned_data <- raw_data %>% 
  .[, new_variable := old_variable * 2] %>% 
  .[condition] %>% 
  .[, .(variable1, variable2)] %>% 
  .[order(variable1)] 
 

4. pipeR Package: The pipeR package provides a pipe operator %>>% that can be used to create 
data pipelines. It allows you to chain operations together. Here's an example: 
 

library(pipeR) 
 
cleaned_data <- raw_data %>>% 
  mutate(new_variable = old_variable * 2) %>>% 
  filter(condition) %>>% 
  select(variable1, variable2) %>>% 
  arrange(variable1) 
 



These are just a few examples of how you can use pipelines in R for data cleaning and processing. The 
choice of package and operator depends on your personal preference and the specific packages you are 
using. Pipelines provide a concise and readable way to perform a series of data transformations, making 
your code more efficient and easier to understand. 
 
Advanced data types refer to data structures or formats that go beyond the basic primitive types (such as 
integers, floating-point numbers, strings, and booleans) commonly used in programming languages. 
These advanced data types are designed to represent more complex and specialized data structures and 
are often used in specific domains or applications. Here are some examples of advanced data types: 

1. Arrays: Arrays are a collection of elements of the same type, arranged in a contiguous block of 
memory. They allow for efficient storage and retrieval of multiple values. Arrays can be one-
dimensional (vectors), two-dimensional (matrices), or multi-dimensional. 

2. Lists: Lists are a collection of elements that can be of different types. Unlike arrays, lists are not 
constrained to a fixed size, and elements can be added or removed dynamically. Lists provide 
flexibility in managing and manipulating heterogeneous data. 

3. Data Frames: Data frames are two-dimensional tabular data structures where columns can 
contain different types of data. They are commonly used to store and manipulate structured 
data, such as spreadsheets or database tables. Data frames are widely used in statistical analysis 
and data manipulation in languages like R and Python (with Pandas). 

4. Time Series: Time series data represents observations or measurements taken at regular 
intervals over time. It is commonly used in fields such as finance, economics, weather 
forecasting, and signal processing. Time series data types often include timestamps or time 
indices associated with each data point. 

5. Geospatial Data Types: Geospatial data types represent geographic features and their attributes. 
They are used to store and analyze spatial data, such as points, lines, polygons, and raster 
images. Geospatial data types include geometries, topologies, and coordinate reference systems, 
and are commonly used in Geographic Information Systems (GIS). 

6. Networks and Graphs: Network data types represent relationships or connections between 
entities. They are used to model and analyze complex systems, such as social networks, 
transportation networks, or computer networks. Network data types include nodes (vertices) 
and edges (links) that define the structure and connectivity of the graph. 

 



7. Text and Text Mining Data Types: Text data types represent textual information, such as 
documents, articles, or social media posts. Text data types can include plain text, tokenized text, 
or structured representations like bag-of-words or term frequency-inverse document frequency 
(TF-IDF) matrices. They are commonly used in natural language processing (NLP) and text mining 
tasks. 

8. Multimedia Data Types: Multimedia data types represent various forms of multimedia content, 
including images, audio, video, and other multimedia formats. They are used in fields such as 
computer vision, image processing, speech recognition, and multimedia analytics. 

These are just a few examples of advanced data types. The choice of data type depends on the specific 
needs of the application and the characteristics of the data being processed. Advanced data types allow 
for more expressive representations and enable efficient handling and analysis of complex and 
specialized data structures. 
 

 
 
Faceting in ggplot2 is a powerful technique to create multiple plots based on one or more categorical 
variables, allowing you to compare subsets of your data easily. Faceting divides the data into subsets and 
creates a separate plot for each subset, arranging them into a grid. There are two main functions used 
for faceting in ggplot2: facet_wrap() and facet_grid(). 
 
facet_wrap(): 
facet_wrap() arranges the plots in a wrapping manner, typically in a single direction (either horizontally 
or vertically) but can be adjusted to fit into a grid. It is useful when you have a single faceting variable. 
 
facet_wrap(~ variable, nrow = NULL, ncol = NULL, scales = "fixed") 
 

• variable: The variable to facet by. 

• nrow: Number of rows. 

• ncol: Number of columns. 

• scales: Determines if the scales are fixed ("fixed") or free ("free", "free_x", "free_y"). 
Example: 
 
library(ggplot2) 
# Example dataset 
data(mpg) 
# Basic ggplot 
p <- ggplot(mpg, aes(x = displ, y = hwy)) + 



  geom_point() 
# Faceting by 'class' 
p + facet_wrap(~ class) 
 
facet_grid() 
facet_grid() arranges the plots into a grid of rows and columns, defined by one or two faceting variables. 
It is particularly useful when you want to compare data across two variables. 
Syntax: 
 
facet_grid(rows ~ cols, scales = "fixed") 
 

• rows: The variable to facet by rows. 

• cols: The variable to facet by columns. 

• scales: Determines if the scales are fixed ("fixed") or free ("free", "free_x", "free_y"). 
Example: 
 
library(ggplot2) 
# Example dataset 
data(mpg) 
# Basic ggplot 
p <- ggplot(mpg, aes(x = displ, y = hwy)) + 
  geom_point() 
# Faceting by 'drv' (rows) and 'cyl' (columns) 
p + facet_grid(drv ~ cyl) 
 
Customizing Facets 
You can further customize facets using additional parameters: 

• labeller: Customizes the facet labels. 

• switch: Moves the facet labels to the opposite side. 

• as.table: Controls the order of the facets (by default, facets are arranged like a table). 
Customizing Example: 
 
# Custom labeller 
p + facet_wrap(~ class, labeller = label_both) 
 
Practical Considerations 

• Scales: By default, facets share the same scales. Use scales = "free" to allow each facet to have 
its own scale. 

• Layout: The layout of facets can be controlled by specifying nrow and ncol in facet_wrap(), or by 
arranging the variables in facet_grid(). 

• Theme Adjustments: Facets can be further customized using theme elements like strip.text, 
strip.background, etc. 

Example with Custom Theme: 
 
p + facet_wrap(~ class) + 
  theme(strip.text = element_text(size = 12, face = "bold"), 
        strip.background = element_rect(fill = "lightblue")) 



 
Faceting is a powerful way to compare different subsets of your data in ggplot2. By using facet_wrap() 
for single variables and facet_grid() for combinations of variables, you can create comprehensive and 
visually appealing multi-plot layouts. Remember to leverage customization options to enhance the 
readability and aesthetics of your faceted plots. 
 
Plotting data with groups in R involves creating visualizations that distinguish between different 
categories or groups within the data. Here are some common types of grouped plots using ggplot2: 

1. Grouped Scatter Plot 
A scatter plot that distinguishes groups using color or shape. 

Example: 
 
library(ggplot2) 
 
# Example dataset 
data(mpg) 
 
# Scatter plot with groups by manufacturer 
ggplot(mpg, aes(x = displ, y = hwy, color = manufacturer)) + 
  geom_point() + 
  theme_minimal() + 
  labs(title = "Scatter Plot with Groups", 
       x = "Displacement", 
       y = "Highway Miles per Gallon") 
 

2. Grouped Line Plot 
A line plot that shows trends for different groups. 

Example: 
 
# Example dataset 
data(economics_long) 
 
# Line plot with groups by variable 
ggplot(economics_long, aes(x = date, y = value01, color = variable)) + 
  geom_line() + 
  theme_minimal() + 
  labs(title = "Line Plot with Groups", 
       x = "Date", 
       y = "Normalized Value") 
 

3. Grouped Bar Plot 
A bar plot that shows the distribution of different groups. 

Example: 
 
# Example dataset 
data(diamonds) 
 
# Grouped bar plot by cut 



ggplot(diamonds, aes(x = cut, fill = clarity)) + 
  geom_bar(position = "dodge") + 
  theme_minimal() + 
  labs(title = "Grouped Bar Plot", 
       x = "Cut", 
       y = "Count") 
 

4. Grouped Box Plot 
A box plot that shows the distribution of a continuous variable for different groups. 

Example: 
 
# Grouped box plot by cut 
ggplot(diamonds, aes(x = cut, y = price, fill = cut)) + 
  geom_boxplot() + 
  theme_minimal() + 
  labs(title = "Grouped Box Plot", 
       x = "Cut", 
       y = "Price") 
 

5. Grouped Density Plot 
A density plot that shows the distribution of a continuous variable for different groups. 

Example: 
 
# Grouped density plot by cut 
ggplot(diamonds, aes(x = price, fill = cut)) + 
  geom_density(alpha = 0.5) + 
  theme_minimal() + 
  labs(title = "Grouped Density Plot", 
       x = "Price", 
       y = "Density") 
 

6. Grouped Violin Plot 
A violin plot that combines a box plot and a density plot to show the distribution of a continuous 
variable for different groups. 

Example: 
 
# Grouped violin plot by cut 
ggplot(diamonds, aes(x = cut, y = price, fill = cut)) + 
  geom_violin() + 
  theme_minimal() + 
  labs(title = "Grouped Violin Plot", 
       x = "Cut", 
       y = "Price") 
 

7. Grouped Facet Plot 
Using faceting to create a grid of plots for different groups. 

Example: 
 



# Scatter plot with facets by cut 
ggplot(diamonds, aes(x = carat, y = price)) + 
  geom_point() + 
  facet_wrap(~ cut) + 
  theme_minimal() + 
  labs(title = "Facet Plot by Cut", 
       x = "Carat", 
       y = "Price") 
 
Grouping data in plots helps to visualize comparisons and differences between categories within the 
data. The ggplot2 package provides various functions to create grouped plots, such as using color, fill, 
facet_wrap(), and facet_grid(). These examples showcase how to effectively use these techniques to gain 
insights from grouped data. 
 
To create network graphs of relationships in R, you can use the igraph package. igraph provides a wide 
range of functions and capabilities for analyzing and visualizing networks. Here's an overview of the 
steps involved: 

1. Install and load the igraph package: 
 

install.packages("igraph") 
library(igraph) 
 

2. Prepare your data: 

• Network data is typically represented as an edge list or an adjacency matrix. The edge list 
contains pairs of nodes that are connected, and the adjacency matrix represents the 
connections between nodes. 

• If you have an edge list, you can create a graph object using the graph_from_edgelist() 
function. If you have an adjacency matrix, you can use the graph_from_adjacency_matrix() 
function. 

• Optionally, you can also assign attributes to nodes or edges using the V() and E() functions. 
3. Customize the graph appearance: 

• igraph provides various options to customize the appearance of the graph. You can modify 
attributes such as node color, size, shape, label, and edge width. 

• Use functions like set_vertex_attr(), set_edge_attr(), and V()$attribute_name to modify node 
and edge attributes. 

4. Visualize the network graph: 

• Use the plot() function to visualize the network graph. By default, it will create a basic plot, 
but you can customize it further. 

• igraph provides different layout algorithms to position the nodes, such as Fruchterman-
Reingold (layout_with_fr()), Kamada-Kawai (layout_with_kk()), or circular 
(layout_as_circle()). 

• You can also use functions like vertex.color, vertex.size, vertex.label, and edge.width to 
control the visual attributes of nodes and edges. 

Here's a simplified example that demonstrates the basic process: 
 

# Install and load the igraph package 
install.packages("igraph") 



library(igraph) 
 
# Create an edge list 
edges <- data.frame( 
  from = c("A", "A", "B", "C", "D"), 
  to = c("B", "C", "D", "E", "E") 
) 
 
# Create a graph object 
graph <- graph_from_data_frame(edges) 
 
# Customize the graph appearance 
V(graph)$color <- "lightblue"  # Node color 
V(graph)$size <- 25  # Node size 
E(graph)$width <- 2  # Edge width 
 
# Visualize the network graph 
plot(graph, layout = layout_with_fr) 
 

This is a basic example, but igraph provides many advanced features for network analysis, such as 
community detection, centrality measures, and path finding. You can explore the igraph documentation 
for more details on these advanced functionalities and customization options. 
 
Resources: 

1. https://flowingdata.com/2012/05/15/how-to-visualize-and-compare-distributions/ 
2. https://r4ds.had.co.nz/data-visualisation.html 
3. https://www.r-bloggers.com/2019/06/interactive-network-visualization-with-r/ 
4. https://builtin.com/data-science/grouping-r 
5. https://dplyr.tidyverse.org/reference/group_by.hhttps://builtin.com/data-science/grouping-rml 
6. https://www.sfu.ca/~mjbrydon/tutorials/BAinR/filter.html 
7. https://cran.r-project.org/web/packages/crunch/vignettes/filters.html 
8. https://www.listendata.com/2023/08/how-to-filter-dataframe-in-r-with.html 
9. https://blog.revolutionanalytics.com/2009/01/r-graph-gallery.html 
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