
Lecture 9 
 
Gaussian Process regression, Part 1 
 
Gaussian Process Regression (GPR) is a powerful, non-parametric Bayesian approach to regression. 
Unlike traditional parametric regression methods, which assume a specific functional form for the 
underlying data (such as linear or polynomial), GPR makes predictions based on the assumption that the 
data can be represented as a sample from a multivariate Gaussian distribution. This approach models 
the underlying function as a distribution over functions, rather than as a single fixed function. 
 
In GPR, predictions at new points are derived by considering the correlation (or covariance) between 
these new points and the observed data points. This correlation is defined by a kernel function, which 
encodes assumptions about the smoothness, periodicity, and other properties of the underlying 
function. Common kernel functions include the Radial Basis Function (RBF), Matérn, and linear kernels. 
The strength of GPR lies in its ability to provide not only a prediction but also a measure of uncertainty 
associated with that prediction, which is useful in many practical applications. However, GPR can be 
computationally expensive, especially for large datasets, due to the inversion of large covariance 
matrices, though various approximation methods have been developed to mitigate this challenge. 
 
We are going to use R to build up some examples from scratch to better understand how it works. In 
geostatistics, this process is also called kriging (although, to implement kriging in R, most packages will 
require a spatial data frame, since that’s context in which it is most commonly used, while packages that 
implement Gaussian process regression (so named) do not require a spatial data frame. 
 
The Gaussian process regression examples we’ll be building from use a Euclidean distance function. One 
of the places where we can customize our modeling function will be in the way distances are calculated. 
However, for the time being, we’ll stick with the standard metric. 
 
Another element of Gaussian process regression is the kernel: a function used to find the covariance 
matrix we use in the model. It’s common to use an exponential kernel (with negative distance in the 
exponent) to indicate that the further two points are from each other, the less related they are (decaying 
exponentially). In this way, nearby points have more influence on the model than far away points. 
However, the specifics of this kernel can also be customized. In geostatistics, inverse weights are 
sometimes used and other modelling choices are available.  Again, for now, we’ll stick with the standard 
metrics, but this is another place where modifications to the general framework can be made if desired. 
 
We’ll start with some sample data, and create a matrix of the results. You’ll need to install the library 
plgp for the distance function, or use dist() from base R. Finally, we add a small epsilon to make the 
computations go a bit more smoothly. Sometimes our examples can have issues related to collinearity, 
and the small epsilon can eliminate that issue. 
 

n <- 100 
X <- matrix(seq(0, 10, length=n), ncol=1) 
library(plgp) 
D <- distance(X) 
eps <- sqrt(.Machine$double.eps)  
Sigma <- exp(-D) + diag(eps, n) 

 



We can create a matrix from these elements and generate our random function that goes through the 
points. (Note: you may need to install the mvtnorm library here, first.) 
 

library(mvtnorm) 
Y <- rmvnorm(1, sigma=Sigma) 

 
That’s it! We’ve generated a finite realization of a random function under a GP prior with a particular 
covariance structure. Now all that’s left is visualization. 
 

plot(X, Y, type="l") 
 
Without setting the random seed, our examples will look different from each other, but this is what mine 
looks like. 
 

 
 
Short distances are highly correlated, long ones essentially uncorrelated. Because the base variance is 1, 
we get a range of y-values typical of a Gaussian distribution (most values between -2 and 2). 
 
We can generate additional examples of these random functions and plot them on the same graph. 
 

Y <- rmvnorm(3, sigma=Sigma) 
matplot(X, t(Y), type="l", ylab="Y") 
 

 
This is a good place to experiment with different distance metrics and different kernels, before the code 
gets more complex. 
 
Let’s consider how this works with a simple one-dimensional prediction example. See the reading from 
this week for an explanation of each specific step. 
 

n <- 8 
X <- matrix(seq(0, 2*pi, length=n), ncol=1) 
y <- sin(X) 
D <- distance(X)  
Sigma <- exp(-D) + diag(eps, ncol(D)) 



 
#generate Y 
XX <- matrix(seq(-0.5, 2*pi + 0.5, length=100), ncol=1) 
DXX <- distance(XX) 
SXX <- exp(-DXX) + diag(eps, ncol(DXX)) 
 
DX <- distance(XX, X) 
SX <- exp(-DX)  
 
Si <- solve(Sigma) 
mup <- SX %*% Si %*% y 
Sigmap <- SXX - SX %*% Si %*% t(SX) 
 
YY <- rmvnorm(100, mup, Sigmap) 
 
q1 <- mup + qnorm(0.05, 0, sqrt(diag(Sigmap))) 
q2 <- mup + qnorm(0.95, 0, sqrt(diag(Sigmap))) 
 
matplot(XX, t(YY), type="l", col="gray", lty=1, xlab="x", ylab="y") 
points(X, y, pch=20, cex=2) 
lines(XX, sin(XX), col="blue") 
lines(XX, mup, lwd=2) 
lines(XX, q1, lwd=2, lty=2, col=2) 
lines(XX, q2, lwd=2, lty=2, col=2) 

 

 
 
Note that Gaussian process regression is Bayesian, which works a little differently than frequentist 
approaches. The grey lines are other functions that pass through the data points. The black line is the 
mean of all the functions. The red dotted lines are the 95% confidence intervals (95% of the functions as 
within these bounds). 
 
Let’s look at an example in a higher dimension. 

 
nx <- 20 
x <- seq(0, 2, length=nx) 
X <- expand.grid(x, x) 
 
D <- distance(X) 
Sigma <- exp(-D) + diag(eps, nrow(X)) 
 



Y <- rmvnorm(2, sigma=Sigma) 
 
par(mfrow=c(1,2))  
persp(x, x, matrix(Y[1,], ncol=nx), theta=-30, phi=30, xlab="x1",  
  ylab="x2", zlab="y") 
persp(x, x, matrix(Y[2,], ncol=nx), theta=-30, phi=30, xlab="x1",  
  ylab="x2", zlab="y") 

 

 
 

 

Let’s try looking at some data generated from the function 𝑦(𝑥⃗) = 𝑥1𝑒
−𝑥1

2−𝑥2
2
. This function is nonlinear 

with some “bumpy” areas and some smooth ones. 
 

library(lhs)  
X <- randomLHS(40, 2) 
X[,1] <- (X[,1] - 0.5)*6 + 1 
X[,2] <- (X[,2] - 0.5)*6 + 1 
y <- X[,1]*exp(-X[,1]^2 - X[,2]^2) 

 
The inputs Will be mapped on a scale of [-2,4], and then we’ll create a 40x40 grid of inputs. 
 

xx <- seq(-2, 4, length=40) 
XX <- expand.grid(xx, xx) 

 
Now we repeat much of our prior process for the modeling. 
 

D <- distance(X) 
Sigma <- exp(-D) 
 
DXX <- distance(XX) 
SXX <- exp(-DXX) + diag(eps, ncol(DXX)) 
DX <- distance(XX, X) 
SX <- exp(-DX) 
 
Si <- solve(Sigma) 
mup <- SX %*% Si %*% y 
Sigmap <- SXX - SX %*% Si %*% t(SX) 
 
sdp <- sqrt(diag(Sigmap)) 



 
par(mfrow=c(1,2)) 
cols <- heat.colors(128) 
image(xx, xx, matrix(mup, ncol=length(xx)), xlab="x1", ylab="x2", col=cols) 
points(X[,1], X[,2]) 
image(xx, xx, matrix(sdp, ncol=length(xx)), xlab="x1", ylab="x2", col=cols) 
points(X[,1], X[,2]) 

 

 
 
The left graph is the mean, the right graph is the standard deviation. In both graphs, white represents 
high values and red low ones. The highest and lowest mean values are near the origin (on either side of 
(0,0)), while the highest standard deviation values are further from the test points and smaller nearest 
them. 
 
The 3D graph of the model might help. 
 

persp(xx, xx, matrix(mup, ncol=40), theta=-30, phi=30, xlab="x1",  ylab="x2", zlab="y") 
 

 
 
Gaussian process regression has several hyperparameters that can also be set. Let’s examine those. 
 

n <- 100 
X <- matrix(seq(0, 10, length=n), ncol=1) 
D <- distance(X) 
 
C <- exp(-D) + diag(eps, n)  



tau2 <- 25 
Y <- rmvnorm(10, sigma=tau2*C) 
 
matplot(X, t(Y), type="l") 

 
The choice of 𝜏 affects the amplitude of the “wiggle” in 𝑦. Before the amplitude was confined to [-2,2], 
but here we are more like [-10,10]. 
 

 
Let’s look at a model of a sine function. 
 

n <- 8 
X <- matrix(seq(0, 2*pi, length=n), ncol=1) 
y <- 5*sin(X) 
 
D <- distance(X) 
Sigma <- exp(-D) 
XX <- matrix(seq(-0.5, 2*pi + 0.5, length=100), ncol=1) 
DXX <- distance(XX) 
SXX <- exp(-DXX) + diag(eps, ncol(DXX)) 
DX <- distance(XX, X) 
SX <- exp(-DX) 
Si <- solve(Sigma);  
mup <- SX %*% Si %*% y 
Sigmap <- SXX - SX %*% Si %*% t(SX) 
 
YY <- rmvnorm(100, mup, Sigmap) 
q1 <- mup + qnorm(0.05, 0, sqrt(diag(Sigmap))) 
q2 <- mup + qnorm(0.95, 0, sqrt(diag(Sigmap))) 
matplot(XX, t(YY), type="l", col="gray", lty=1, xlab="x", ylab="y") 
points(X, y, pch=20, cex=2) 
lines(XX, mup, lwd=2) 
lines(XX, 5*sin(XX), col="blue") 
lines(XX, q1, lwd=2, lty=2, col=2) 
lines(XX, q2, lwd=2, lty=2, col=2) 
 



 
 
Failing to correctly estimate the 𝜏 (using the wrong prior assumptions) can produce an underestimate of 
the error (as here), particularly outside the range of the data. One solution is to estimate the 𝜏 from the 
data prior to doing the rest of the calculations. 
 

CX <- SX 
Ci <- Si 
CXX <- SXX 
tau2hat <- drop(t(y) %*% Ci %*% y / length(y)) 
 
2*sqrt(tau2hat) 
 
mup2 <- CX %*% Ci %*% y 
Sigmap2 <- tau2hat*(CXX - CX %*% Ci %*% t(CX)) 
 
YY <- rmvnorm(100, mup2, Sigmap2) 
q1 <- mup + qnorm(0.05, 0, sqrt(diag(Sigmap2))) 
q2 <- mup + qnorm(0.95, 0, sqrt(diag(Sigmap2))) 
 
matplot(XX, t(YY), type="l", col="gray", lty=1, xlab="x", ylab="y") 
points(X, y, pch=20, cex=2) 
lines(XX, mup, lwd=2) 
lines(XX, 5*sin(XX), col="blue") 
lines(XX, q1, lwd=2, lty=2, col=2); lines(XX, q2, lwd=2, lty=2, col=2) 
 

 
Alternative distance measurements, such as the Mahalanobis distance may improve the quality of 
predictions. 
 

score <- function(Y, mu, Sigma, mah=FALSE) 
 { 
  Ymmu <- Y - mu 
  Sigmai <- solve(Sigma) 
  mahdist <- t(Ymmu) %*% Sigmai %*% Ymmu 



  if(mah) return(sqrt(mahdist)) 
  return (- determinant(Sigma, logarithm=TRUE)$modulus - mahdist) 
 } 
 
Ytrue <- 5*sin(XX) 
df <- data.frame(score(Ytrue, mup, Sigmap, mah=TRUE),  
  score(Ytrue, mup2, Sigmap2, mah=TRUE)) 
colnames(df) <- c("tau2=1", "tau2hat") 
df 

 
So far, we have been doing interpolating rather than regression, since we have assumed no noise on any 
of our inputs. To do that, we need to estimate a nugget, which will involve maximum likelihood 
estimation and numerical optimization. Optimization libraries are mostly set up for minimization, and we 
need maximization, so the code will be applied to the negative likelihood. Some additional tweaks for 
this example are the optimization is done on the distances, rather than x, and a counter is included to 
check the number of iterations required. 
 

nlg <- function(g, D, Y)  
 { 
  n <- length(Y) 
  K <- exp(-D) + diag(g, n) 
  Ki <- solve(K) 
  ldetK <- determinant(K, logarithm=TRUE)$modulus 
  ll <- - (n/2)*log(t(Y) %*% Ki %*% Y) - (1/2)*ldetK 
  counter <<- counter + 1 
  return(-ll) 
 } 

 
Let’s look at our sine example, but with noise added. 
 

X <- rbind(X, X) 
n <- nrow(X) 
y <- 5*sin(X) + rnorm(n, sd=1) 
D <- distance(X) 
 
counter <- 0 
g <- optimize(nlg, interval=c(eps, var(y)), D=D, Y=y)$minimum 
g 
 
K <- exp(-D) + diag(g, n) 
Ki <- solve(K) 
tau2hat <- drop(t(y) %*% Ki %*% y / n) 
c(tau=sqrt(tau2hat), sigma=sqrt(tau2hat*g)) 

 
We should expect values close to 2.5 and 1 respectively for 𝜏, 𝜎. Now we have what we need to repeat 
our analysis. 
 

DX <- distance(XX, X) 



KX <- exp(-DX) 
KXX <- exp(-DXX) + diag(g, nrow(DXX)) 
 
mup <- KX %*% Ki %*% y 
Sigmap <- tau2hat*(KXX - KX %*% Ki %*% t(KX)) 
q1 <- mup + qnorm(0.05, 0, sqrt(diag(Sigmap))) 
q2 <- mup + qnorm(0.95, 0, sqrt(diag(Sigmap))) 
 
Sigma.int <- tau2hat*(exp(-DXX) + diag(eps, nrow(DXX)) - KX %*% Ki %*% t(KX)) 
YY <- rmvnorm(100, mup, Sigma.int) 
 
matplot(XX, t(YY), type="l", lty=1, col="gray", xlab="x", ylab="y") 
points(X, y, pch=20, cex=2) 
lines(XX, mup, lwd=2) 
lines(XX, 5*sin(XX), col="blue") 
lines(XX, q1, lwd=2, lty=2, col=2) 
lines(XX, q2, lwd=2, lty=2, col=2) 

 

 
While there is now some decrease in variance near the observed points, it does not go to zero as we saw 
in the examples that assumed no noise. 
 
We can also use derivative-based optimization methods to obtain a faster convergence, which may not 
matter much in a case as small as these initial examples, but could matter more in situations with more 
observations and more variables. 
 

gnlg <- function(g, D, Y) 
 { 
  n <- length(Y) 
  K <- exp(-D) + diag(g, n) 
  Ki <- solve(K) 
  KiY <- Ki %*% Y 
  dll <- (n/2) * t(KiY) %*% KiY / (t(Y) %*% KiY) - (1/2)*sum(diag(Ki)) 
  return(-dll) 
 } 
 
counter <- 0 
out <- optim(0.1*var(y), nlg, gnlg, method="L-BFGS-B", lower=eps,  
  upper=var(y), D=D, Y=y) 
c(g, out$par) 
c(out$counts, actual=counter) 



We should obtain a g value similar to the previous case with fewer iterations. The rest of the calculation 
would proceed as before since this only estimates a parameter, not the entire model. 
 
We’ve been looking a particular rate for the correlation to decay, but this is something we can adjust. If 
the correlation remains strong for longer, we get a smoother model. If the decay happens more quickly, 
we can get a more wiggly model. Let’s look at how we make this adjustment to the code. This is now has 
more than one variable to optimize, so we’ll need to take that into account when we choose our 
optimization method. 
 

nl <- function(par, D, Y)  
 { 
  theta <- par[1]                                       ## change 1 
  g <- par[2] 
  n <- length(Y) 
  K <- exp(-D/theta) + diag(g, n)                       ## change 2 
  Ki <- solve(K) 
  ldetK <- determinant(K, logarithm=TRUE)$modulus 
  ll <- - (n/2)*log(t(Y) %*% Ki %*% Y) - (1/2)*ldetK 
  counter <<- counter + 1 
  return(-ll) 
 } 
 
library(lhs)  
X2 <- randomLHS(40, 2) 
X2 <- rbind(X2, X2) 
X2[,1] <- (X2[,1] - 0.5)*6 + 1 
X2[,2] <- (X2[,2] - 0.5)*6 + 1 
y2 <- X2[,1]*exp(-X2[,1]^2 - X2[,2]^2) + rnorm(nrow(X2), sd=0.01) 
 
D <- distance(X2) 
counter <- 0 
out <- optim(c(0.1, 0.1*var(y2)), nl, method="L-BFGS-B", lower=eps,  
  upper=c(10, var(y2)), D=D, Y=y2)  
out$par 
 
brute <- c(out$counts, actual=counter) 
brute 

 
Another way of approaching this calculation: 
 

gradnl <- function(par, D, Y) 
 { 
  ## extract parameters 
  theta <- par[1] 
  g <- par[2] 
 
  ## calculate covariance quantities from data and parameters 
  n <- length(Y) 



  K <- exp(-D/theta) + diag(g, n) 
  Ki <- solve(K) 
  dotK <- K*D/theta^2 
  KiY <- Ki %*% Y 
 
  ## theta component 
  dlltheta <- (n/2) * t(KiY) %*% dotK %*% KiY / (t(Y) %*% KiY) -  
    (1/2)*sum(diag(Ki %*% dotK)) 
 
  ## g component 
  dllg <- (n/2) * t(KiY) %*% KiY / (t(Y) %*% KiY) - (1/2)*sum(diag(Ki)) 
     
  ## combine the components into a gradient vector 
  return(-c(dlltheta, dllg)) 
 } 
 
counter <- 0 
outg <- optim(c(0.1, 0.1*var(y2)), nl, gradnl, method="L-BFGS-B",  
  lower=eps, upper=c(10, var(y2)), D=D, Y=y2)  
rbind(grad=outg$par, brute=out$par) 
 
rbind(grad=c(outg$counts, actual=counter), brute) 

 
And now the components we need to make the predictions. 
 

K <- exp(- D/outg$par[1]) + diag(outg$par[2], nrow(X2)) 
Ki <- solve(K) 
tau2hat <- drop(t(y2) %*% Ki %*% y2 / nrow(X2)) 
 
gn <- 40 
xx <- seq(-2, 4, length=gn) 
XX <- expand.grid(xx, xx) 
DXX <- distance(XX) 
KXX <- exp(-DXX/outg$par[1]) + diag(outg$par[2], ncol(DXX)) 
DX <- distance(XX, X2) 
KX <- exp(-DX/outg$par[1]) 
 
mup <- KX %*% Ki %*% y2 
Sigmap <- tau2hat*(KXX - KX %*% Ki %*% t(KX)) 
sdp <- sqrt(diag(Sigmap)) 
 
par(mfrow=c(1,2)) 
image(xx, xx, matrix(mup, ncol=gn), main="mean", xlab="x1", ylab="x2", col=cols) 
points(X2) 
image(xx, xx, matrix(sdp, ncol=gn), main="sd", xlab="x1",  ylab="x2", col=cols) 
points(X2) 
 



 
 
Splines are often used for low-dimensional models instead of GPs, but let’s do a comparison with one 
particular implementation of multi-dimensional splines in R. 

 
fried <- function(n=50, m=6) 
 { 
  if(m < 5) stop("must have at least 5 cols") 
  X <- randomLHS(n, m) 
  Ytrue <- 10*sin(pi*X[,1]*X[,2]) + 20*(X[,3] - 0.5)^2 + 10*X[,4] + 5*X[,5] 
  Y <- Ytrue + rnorm(n, 0, 1) 
  return(data.frame(X, Y, Ytrue)) 
 } 

 
The “surface” we are modeling is 𝐸{𝑌(𝑥)} = 10𝑠𝑖𝑛(𝜋𝑥1𝑥2) + 20(𝑥3 − 0.5)2 + 10𝑥4 − 5𝑥5. 
 

m <- 7 
n <- 200 
nprime <- 1000 
data <- fried(n + nprime, m) 
X <- as.matrix(data[1:n,1:m]) 
y <- drop(data$Y[1:n]) 
XX <- as.matrix(data[(n + 1):(n + nprime),1:m]) 
yy <- drop(data$Y[(n + 1):(n + nprime)]) 
yytrue <- drop(data$Ytrue[(n + 1):(n + nprime)]) 
 
D <- distance(X) 
out <- optim(c(0.1, 0.1*var(y)), nl, gradnl, method="L-BFGS-B", lower=eps,  
             upper=c(10, var(y)), D=D, Y=y) 
out 
 
K <- exp(- D/out$par[1]) + diag(out$par[2], nrow(D)) 
Ki <- solve(K) 
tau2hat <- drop(t(y) %*% Ki %*% y / nrow(D)) 
 
DXX <- distance(XX) 
KXX <- exp(-DXX/out$par[1]) + diag(out$par[2], ncol(DXX)) 
DX <- distance(XX, X) 
KX <- exp(-DX/out$par[1]) 
 



mup <- KX %*% Ki %*% y 
Sigmap <- tau2hat*(KXX - KX %*% Ki %*% t(KX)) 

 
Visualizing is a problem, but we can look at the RMSE. 
 

rmse <- c(gpiso=sqrt(mean((yytrue - mup)^2))) 
rmse 

 
Let’s compare with the spline model. 
 

library(mda) 
fit.mars <- mars(X, y) 
p.mars <- predict(fit.mars, XX) 
 
rmse <- c(rmse, mars=sqrt(mean((yytrue - p.mars)^2))) 
rmse 

 
In most cases, you’d expect the GP model to be a bit better, but the splines will do better about 5% of 
the time (indeed, when I ran this example, the splines did a little better), but you can rerun the models a 
couple of times (redo the random errors), and see what happens. 
 
As with previous cases, we can adjust the distance parameter decay rate to adjust the model for better 
results. 
 

nlsep <- function(par, X, Y)  
 { 
  theta <- par[1:ncol(X)]   
  g <- par[ncol(X)+1] 
  n <- length(Y) 
  K <- covar.sep(X, d=theta, g=g) 
  Ki <- solve(K) 
  ldetK <- determinant(K, logarithm=TRUE)$modulus 
  ll <- - (n/2)*log(t(Y) %*% Ki %*% Y) - (1/2)*ldetK 
  counter <<- counter + 1 
  return(-ll) 
 } 
 
tic <- proc.time()[3] 
counter <- 0  
out <- optim(c(rep(0.1, ncol(X)), 0.1*var(y)), nlsep, method="L-BFGS-B",  
  X=X, Y=y, lower=eps, upper=c(rep(10, ncol(X)), var(y))) 
toc <- proc.time()[3] 
out$par 
 
brute <- c(out$counts, actual=counter) 
brute 
 
toc - tic 



gradnlsep <- function(par, X, Y) 
 { 
  theta <- par[1:ncol(X)] 
  g <- par[ncol(X)+1] 
  n <- length(Y) 
  K <- covar.sep(X, d=theta, g=g)  
  Ki <- solve(K) 
  KiY <- Ki %*% Y 
 
  ## loop over theta components 
  dlltheta <- rep(NA, length(theta)) 
  for(k in 1:length(dlltheta)) { 
    dotK <- K * distance(X[,k])/(theta[k]^2) 
    dlltheta[k] <- (n/2) * t(KiY) %*% dotK %*% KiY / (t(Y) %*% KiY) -  
      (1/2)*sum(diag(Ki %*% dotK)) 
  } 
 
  ## for g    
  dllg <- (n/2) * t(KiY) %*% KiY / (t(Y) %*% KiY) - (1/2)*sum(diag(Ki)) 
     
  return(-c(dlltheta, dllg)) 
 } 
 
tic <- proc.time()[3] 
counter <- 0 
outg <- optim(c(rep(0.1, ncol(X)), 0.1*var(y)), nlsep, gradnlsep,  
  method="L-BFGS-B", lower=eps, upper=c(rep(10, ncol(X)), var(y)), X=X, Y=y)  
toc <- proc.time()[3] 
thetahat <- rbind(grad=outg$par, brute=out$par) 
colnames(thetahat) <- c(paste0("d", 1:ncol(X)), "g") 
thetahat 
 
rbind(grad=c(outg$counts, actual=counter), brute) 
 
toc - tic 
 

Let’s compare our models again. 
 

K <- covar.sep(X, d=outg$par[1:ncol(X)], g=outg$par[ncol(X)+1]) 
Ki <- solve(K) 
tau2hat <- drop(t(y) %*% Ki %*% y / nrow(X)) 
KXX <- covar.sep(XX, d=outg$par[1:ncol(X)], g=outg$par[ncol(X)+1])  
KX <- covar.sep(XX, X, d=outg$par[1:ncol(X)], g=0) 
mup2 <- KX %*% Ki %*% y 
Sigmap2 <- tau2hat*(KXX - KX %*% Ki %*% t(KX)) 
 
rmse <- c(rmse, gpsep=sqrt(mean((yytrue - mup2)^2))) 
rmse 



scores <- c(gp=score(yy, mup, Sigmap), mars=NA,  
  gpsep=score(yy, mup2, Sigmap2)) 
scores 

 
There are lots of options for packages that are capable of implementing what we’ve done here, and each 
comes with some level of customization. We’ve looked at kernlab, and RobustGaSP before. Let’s look at 
one more here. 
 

library(laGP) 
tic <- proc.time()[3] 
gpi <- newGPsep(X, y, d=0.1, g=0.1*var(y), dK=TRUE) 
 
mle <- mleGPsep(gpi, param="both", tmin=c(eps, eps), tmax=c(10, var(y))) 
toc <- proc.time()[3] 
 
thetahat <- rbind(grad=outg$par, brute=out$par, laGP=mle$theta) 
colnames(thetahat) <- c(paste0("d", 1:ncol(X)), "g") 
thetahat 
 
toc - tic 
 
rbind(grad=c(outg$counts, actual=counter), brute,  
  laGP=c(mle$its, mle$its, NA)) 
 
p <- predGPsep(gpi, XX) 
 
rmse <- c(rmse, laGP=sqrt(mean((yytrue - p$mean)^2))) 
scores <- c(scores, laGP=score(yy, p$mean, p$Sigma)) 
rbind(rmse, scores) 
 
deleteGPsep(gpi) 

 
 
The end of this section (5.2) of the Surrogates book goes through some additional comparisons with 
packages vs. by-hand constructions. 
 
We’ll continue the discussion of Gaussian processes in the next lecture. 
 
Resources: 

1. https://bookdown.org/rbg/surrogates/chap5.html 
2.  

https://bookdown.org/rbg/surrogates/chap5.html

