
Lecture 12 
 
Multiple regression, ensemble methods 
 
Introduction to Ensemble Methods in Machine Learning 
Ensemble methods are powerful techniques in machine learning that combine multiple models to 
improve overall performance. The basic idea is that by aggregating predictions from several models, you 
can often achieve better generalization and accuracy than you would with a single model. Ensemble 
methods are especially useful in situations where individual models may suffer from high variance, bias, 
or may not be robust enough to capture the complexities of the data. 
 
Three of the most popular ensemble methods are bagging, boosting, and stacking. Each of these 
techniques approaches model combination in a different way, with its own set of advantages and use 
cases. 
 
Bagging (Bootstrap Aggregating) 
Concept: 
Bagging involves creating multiple versions of a model by training each on a different random subset of 
the training data, generated through bootstrapping (random sampling with replacement). Each model is 
then used to make predictions, and these predictions are averaged (in the case of regression) or voted 
upon (in the case of classification) to produce the final output. 
 
Advantages: 

• Reduction in Variance: By averaging multiple models, bagging reduces the variance of the 
prediction and helps prevent overfitting. 

• Parallelization: Each model is trained independently, making it easy to parallelize. 
• Robustness: Since each model sees only a subset of the data, it is less likely to overfit specific 

quirks in the training set. 
 
Example Algorithms: Random Forest (a type of bagged decision tree). 
 
Example Workflow: 

• Create multiple subsets of the data by bootstrapping. 
• Train a model on each subset. 
• Aggregate the predictions (mean for regression, majority vote for classification). 

 
Key Considerations: 

• Bagging works well when you have models that are prone to overfitting, such as decision trees. 
• It may not significantly improve models that are already low in variance. 

 
Boosting 
Concept: 
Boosting is an iterative technique where models are trained sequentially. Each new model tries to 
correct the errors made by the previous models. The final model is a weighted sum of the individual 
models, where the weights depend on the accuracy of each model. Unlike bagging, which treats all 
models equally, boosting gives more weight to models that perform better on the data. 
 
Advantages: 



• Reduction in Bias: Boosting can significantly reduce bias and is particularly useful for creating 
strong learners from weak ones. 

• Handling Imbalanced Data: Boosting can be effective in handling imbalanced datasets by 
focusing on harder-to-classify instances. 

• Customization: The sequential nature allows for flexible adjustments in how errors are weighted 
and corrected. 

 
Example Algorithms: AdaBoost, Gradient Boosting Machines (GBM), XGBoost, LightGBM, CatBoost. 
 
Example Workflow: 

• Train the first model on the dataset. 
• Evaluate the model and identify the misclassified instances. 
• Train a new model, giving more weight to the instances that were misclassified in the previous 

step. 
• Repeat this process for a specified number of iterations or until the model reaches a satisfactory 

level of performance. 
• Aggregate the predictions by weighting them according to each model’s accuracy. 

 
Key Considerations: 

• Boosting can be sensitive to noisy data and outliers because it focuses on difficult-to-classify 
examples. 

• Tuning is more complex than bagging, as it involves setting learning rates, number of iterations, 
and other hyperparameters. 

 
Stacking (Stacked Generalization) 
Concept: 
Stacking involves training multiple different types of models and then using another model, often called 
a meta-learner or stacking model, to learn how to best combine their predictions. Unlike bagging and 
boosting, stacking typically involves using a diverse set of models (e.g., decision trees, SVMs, neural 
networks) rather than variations of a single model type. 
 
Advantages: 

• Leverage Diversity: By combining models of different types, stacking can exploit the strengths of 
each model. 

• Customizability: The choice of base models and the meta-learner can be highly customized to 
the problem at hand. 

• Flexibility: Stacking allows you to incorporate a wide variety of models, including those that 
might not perform well individually. 

 
Example Workflow: 

• Train multiple different models (e.g., a linear regression, a random forest, and an SVM) on the 
training data. 

• Generate predictions from each model on a validation dataset. 
• Train a meta-learner model on the validation predictions to learn how to best combine the base 

models’ outputs. 
• Use the meta-learner to make final predictions on new data. 

 
Key Considerations: 



• Stacking requires careful validation, usually done with k-fold cross-validation, to prevent 
overfitting. 

• The choice of meta-learner is crucial; common choices are linear regression or logistic 
regression, but more complex models can also be used. 

 
Comparison and Summary 

• Bagging is typically used when you have high-variance models and want to reduce overfitting, 
such as with decision trees. 

• Boosting is used when you want to correct for model bias and improve the overall accuracy by 
focusing on harder-to-predict instances. 

• Stacking allows for the combination of multiple different models, which can be advantageous if 
you have access to diverse models that may capture different aspects of the data. 

 
Each of these methods has its place in machine learning, and the choice of which to use depends on the 
specific problem, the data, and the types of models you are working with. 
 
Before we break this down, let’s look at some examples using packages. 
 

# Load necessary libraries 
install.packages("caretEnsemble") #install other packages as needed 
library(caretEnsemble) 
library(randomForest)  # For bagging with Random Forest 
library(xgboost)       # For boosting with XGBoost 
library(caret)         # For stacking with the 'caretEnsemble' package 
 
# Example dataset 
data(mtcars) 
 
# Bagging with Random Forest 
rf_model <- randomForest(mpg ~ ., data = mtcars, ntree = 100) 
rf_preds <- predict(rf_model, mtcars) 
 
# Boosting with XGBoost 
dtrain <- xgb.DMatrix(data = as.matrix(mtcars[, -1]), label = mtcars$mpg) 
params <- list(objective = "reg:squarederror", max_depth = 3, eta = 0.1) 
xgb_model <- xgboost(params = params, data = dtrain, nrounds = 100) 
xgb_preds <- predict(xgb_model, as.matrix(mtcars[, -1])) 
 
# Stacking with caretEnsemble 
model_list <- caretList( 
  mpg ~ ., data = mtcars, 
  trControl = trainControl(method = "cv", number = 5), 
  methodList = c("rf", "lm") 
) 
stack_model <- caretStack(model_list, method = "glm") 
stack_preds <- predict(stack_model, mtcars) 
 
# Compare performance 



cat("Bagging RMSE:", sqrt(mean((rf_preds - mtcars$mpg)^2)), "\n") 
cat("Boosting RMSE:", sqrt(mean((xgb_preds - mtcars$mpg)^2)), "\n") 
cat("Stacking RMSE:", sqrt(mean((stack_preds - mtcars$mpg)^2)), "\n") 

 
In order to dig into these methods more, we’ll create a bagging ensemble of multiple linear regression 
models. The basic process is to create a bootstrap sample, then make a prediction model, make 
predictions, and then aggregate those predictions. I’ve also included some visualizations so that we can 
see the comparisons. 
 

#bagging with regression 
# Load the dataset 
data(mtcars) 
 
# Number of bootstrap samples 
n_bootstraps <- 100 
n <- nrow(mtcars) 
set.seed(123)  # For reproducibility 
 
# Function to fit a linear model on a bootstrap sample 
fit_bootstrap_model <- function(data, indices) { 
  bootstrap_sample <- data[indices, ] 
  lm(mpg ~ ., data = bootstrap_sample) 
} 
 
# Store the models and predictions 
models <- list() 
predictions <- matrix(NA, nrow = n, ncol = n_bootstraps) 
 
# Perform bagging 
for (i in 1:n_bootstraps) { 
  # Generate bootstrap sample 
  indices <- sample(1:n, size = n, replace = TRUE) 
   
  # Fit model on bootstrap sample 
  model <- fit_bootstrap_model(mtcars, indices) 
  models[[i]] <- model 
   
  # Make predictions on the original data 
  predictions[, i] <- predict(model, newdata = mtcars) 
} 
 
# Aggregate predictions by averaging 
final_predictions <- rowMeans(predictions) 
 
# Calculate performance metrics 
mse <- mean((final_predictions - mtcars$mpg)^2) 
rmse <- sqrt(mse) 



r_squared <- 1 - sum((final_predictions - mtcars$mpg)^2) / sum((mtcars$mpg - 
mean(mtcars$mpg))^2) 
 
# Output the results 
cat("Ensemble Bagging Model Performance Metrics:\n") 
cat("RMSE:", rmse, "\n") 
cat("R-Squared:", r_squared, "\n") 
 
# Optional: Compare with a single linear model 
single_model <- lm(mpg ~ ., data = mtcars) 
single_model_predictions <- predict(single_model, newdata = mtcars) 
single_model_rmse <- sqrt(mean((single_model_predictions - mtcars$mpg)^2)) 
single_model_r_squared <- summary(single_model)$r.squared 
 
cat("\nSingle Linear Model Performance Metrics:\n") 
cat("RMSE:", single_model_rmse, "\n") 
cat("R-Squared:", single_model_r_squared, "\n") 
 
# Visualization: Comparison Metrics 
metrics <- data.frame( 
  Model = c("Ensemble Bagging", "Single Linear"), 
  RMSE = c(rmse, single_model_rmse), 
  R_Squared = c(r_squared, single_model_r_squared) 
) 
 
# Plot the comparison of RMSE and R-Squared 
library(ggplot2) 
 
# RMSE Comparison 
ggplot(metrics, aes(x = Model, y = RMSE, fill = Model)) + 
  geom_bar(stat = "identity") + 
  theme_minimal() + 
  ggtitle("RMSE Comparison: Ensemble Bagging vs Single Linear Model") 
 
# R-Squared Comparison 
ggplot(metrics, aes(x = Model, y = R_Squared, fill = Model)) + 
  geom_bar(stat = "identity") + 
  theme_minimal() + 
  ggtitle("R-Squared Comparison: Ensemble Bagging vs Single Linear Model") 
 
# Visualization: Final Predictions vs Original Points 
ggplot(mtcars, aes(x = mpg, y = final_predictions)) + 
  geom_point() + 
  geom_abline(intercept = 0, slope = 1, col = "red") + 
  theme_minimal() + 
  ggtitle("Final Predictions vs Original MPG Values") + 
  xlab("Original MPG") + 
  ylab("Predicted MPG") 



 

 

 
 
This method is particularly useful when dealing with high-variance models, though in this case, linear 
models tend to have lower variance compared to more complex models. However, the principles apply 
broadly across different types of models. 
 
We’ll look at bagging again later in another lecture with decision trees and building a random forest 
algorithm. 
 
Let’s now look at boosting, using the same dataset and regression models. The general approach: Start 
with a simple prediction, which is the mean of the target variable (mpg). Calculate the initial residuals as 
the difference between the actual values and the initial predictions. In each iteration, a new linear model 
is trained on the residuals from the previous model. The predictions are updated by adding the scaled 
predictions of the new model to the previous predictions. The residuals are recalculated after each 
iteration. The learning rate controls how much each model contributes to the final prediction. A smaller 
learning rate requires more iterations. 
 

# Load the necessary dataset 
data(mtcars) 
 
# Set the number of boosting iterations 
n_boosting_iterations <- 100 
learning_rate <- 0.1  # Controls the contribution of each model 
 
# Initialize the model predictions (starting with the mean of the target variable) 
initial_prediction <- mean(mtcars$mpg) 
predictions <- rep(initial_prediction, nrow(mtcars)) 
 
# Initialize the residuals (difference between actual values and predictions) 
residuals <- mtcars$mpg - predictions 



 
# Store all models 
models <- list() 
 
# Boosting iterations 
for (i in 1:n_boosting_iterations) { 
  # Fit a linear model to the residuals 
  model <- lm(residuals ~ ., data = mtcars) 
  models[[i]] <- model 
   
  # Predict the residuals using the new model 
  model_predictions <- predict(model, newdata = mtcars) 
   
  # Update the predictions with the learning rate 
  predictions <- predictions + learning_rate * model_predictions 
   
  # Update the residuals 
  residuals <- mtcars$mpg - predictions 
} 
 
# Calculate final performance metrics 
mse <- mean((predictions - mtcars$mpg)^2) 
rmse <- sqrt(mse) 
r_squared <- 1 - sum((predictions - mtcars$mpg)^2) / sum((mtcars$mpg - 
mean(mtcars$mpg))^2) 
 
# Output the final performance metrics 
cat("Boosting Model Performance Metrics:\n") 
cat("RMSE:", rmse, "\n") 
cat("R-Squared:", r_squared, "\n") 
 
# Plot the results 
library(ggplot2) 
 
# Plot: Predicted MPG vs Actual MPG 
ggplot(mtcars, aes(x = mpg, y = predictions)) + 
  geom_point() + 
  geom_abline(intercept = 0, slope = 1, col = "red") + 
  theme_minimal() + 
  ggtitle("Boosted Model Predictions vs Actual MPG") + 
  xlab("Actual MPG") + 
  ylab("Predicted MPG") 
 
# Optional: Comparing to a single linear model for reference 
single_model <- lm(mpg ~ ., data = mtcars) 
single_model_predictions <- predict(single_model, newdata = mtcars) 
single_model_rmse <- sqrt(mean((single_model_predictions - mtcars$mpg)^2)) 
single_model_r_squared <- summary(single_model)$r.squared 



 
cat("\nSingle Linear Model Performance Metrics:\n") 
cat("RMSE:", single_model_rmse, "\n") 
cat("R-Squared:", single_model_r_squared, "\n") 
 
# Comparison plot: Boosting vs Single Linear Model 
comparison_data <- data.frame( 
  Model = c("Boosting", "Single Linear"), 
  RMSE = c(rmse, single_model_rmse), 
  R_Squared = c(r_squared, single_model_r_squared) 
) 
 
# Plot the comparison of RMSE and R-Squared 
ggplot(comparison_data, aes(x = Model, y = RMSE, fill = Model)) + 
  geom_bar(stat = "identity") + 
  theme_minimal() + 
  ggtitle("RMSE Comparison: Boosting vs Single Linear Model") 
 
ggplot(comparison_data, aes(x = Model, y = R_Squared, fill = Model)) + 
  geom_bar(stat = "identity") + 
  theme_minimal() + 
  ggtitle("R-Squared Comparison: Boosting vs Single Linear Model") 

 

 
 
In this case, we ended up with an 𝑅2 = 1, which is particularly unlikely in any real-world scenario. While 
boosting is a powerful technique, it is not that good. This is one reason why cross-validation of models is 
essential. This technique is more realistic to use on much larger datasets. With the power of 100 
iterations, and only 32 observations in the original dataset, it’s very easy to overfit. Compare the results 
of this algorithm to a much larger dataset, or to one that uses fewer iterations (<<n) for a more realistic 
sense of what boosting can do. 
 
For the stacking example, rather than use linear regression models as the basis for the ensemble, we’ll 
build our stack from nonlinear models. One of the issues we have is that different models can handle 
data in different ways, so combining different types of models can be particularly problematic. Here, we 
need to scale variables for some models, but not other, and LOESS in particular does not support 
extrapolation, so we’ll need to ensure that the minimum and maximum values are included in the 
training set so that the test set will not be out of bounds. It may require some experimentation as to 
which predictor or predictors will do the best job of ensuring this. Or, you may only want to work from 
similar models that avoid these issues. 



# Load required libraries 
library(GPfit) 
library(splines) 
library(ggplot2) 
 
# Load the mtcars dataset 
data(mtcars) 
 
# Split the data into training and testing sets 
set.seed(42) 
min_row <- which.min(mtcars$hp) 
max_row <- which.max(mtcars$hp) 
 
# Remaining indices after including the extremes 
remaining_indices <- setdiff(1:nrow(mtcars), c(min_row, max_row)) 
 
# Sample the rest of the data for training and testing 
train_indices <- sample(remaining_indices, size = (0.7 * length(remaining_indices)), replace = 
FALSE) 
train_indices <- c(train_indices, min_row, max_row)  # Ensure extremes are included 
 
test_indices <- setdiff(1:nrow(mtcars), train_indices) 
 
# Step 2: Create training and testing datasets 
train_data <- mtcars[train_indices, ] 
test_data <- mtcars[test_indices, ] 
 
# Polynomial model (degree 2) 
poly2_model <- function(train_data, test_data) { 
  model <- lm(mpg ~ poly(hp, 2), data = train_data) 
  predict(model, newdata = test_data) 
} 
 
# Polynomial model (degree 3) 
poly3_model <- function(train_data, test_data) { 
  model <- lm(mpg ~ poly(hp, 3), data = train_data) 
  predict(model, newdata = test_data) 
} 
 
# LOESS model 
loess_model <- function(train_data, test_data) { 
  model <- loess(mpg ~ hp, data = train_data, span = 0.5) 
  predict(model, newdata = test_data) 
} 
 
# Smoothing spline model 
spline_model <- function(train_data, test_data) { 
  model <- smooth.spline(train_data$hp, train_data$mpg) 



  predict(model, x = test_data$hp)$y 
} 
 
# Basis spline model (with penalty) 
bspline_model <- function(train_data, test_data) { 
  knots <- quantile(train_data$hp, probs = seq(0.2, 0.8, by = 0.2)) 
  model <- lm(mpg ~ bs(hp, knots = knots), data = train_data) 
  predict(model, newdata = test_data) 
} 
 
# Gaussian Process model 
gp_model <- function(train_data, test_data) { 
  # Scaling the 'hp' variable to [0, 1] 
  hp_min <- min(train_data$hp) 
  hp_max <- max(train_data$hp) 
  train_data$hp_scaled <- (train_data$hp - hp_min) / (hp_max - hp_min) 
  test_data$hp_scaled <- (test_data$hp - hp_min) / (hp_max - hp_min) 
   
  # Fit the GP model 
  model <- GP_fit(train_data$hp_scaled, train_data$mpg) 
   
  # Predict using the fitted GP model 
  predict(model, test_data$hp_scaled)$Y_hat 
} 
 
# Get predictions from all models 
stacked_predictions <- data.frame( 
  poly2 = poly2_model(train_data, test_data), 
  poly3 = poly3_model(train_data, test_data), 
  loess = loess_model(train_data, test_data), 
  spline = spline_model(train_data, test_data), 
  bspline = bspline_model(train_data, test_data), 
  gp = gp_model(train_data, test_data) 
) 
 
# Combine the predictions into a new data frame for stacking 
stacking_data <- data.frame( 
  test_data$mpg, stacked_predictions 
) 
colnames(stacking_data)[1] <- "mpg" 
 
# Fit a linear model to combine the predictions 
stacked_model <- lm(mpg ~ ., data = stacking_data) 
 
# Get the final predictions 
final_predictions <- predict(stacked_model, newdata = stacked_predictions) 
 
# Calculate the Mean Absolute Percentage Error (MAPE) 



mape <- function(actual, predicted) { 
  mean(abs((actual - predicted) / actual)) * 100 
} 
 
# Compare the MAPE of the models 
model_performance <- data.frame( 
  Model = c("Polynomial (degree 2)", "Polynomial (degree 3)", "LOESS",  
            "Smoothing Spline", "Basis Spline", "Gaussian Process", "Stacked Model"), 
  MAPE = c(mape(test_data$mpg, stacked_predictions$poly2), 
           mape(test_data$mpg, stacked_predictions$poly3), 
           mape(test_data$mpg, stacked_predictions$loess), 
           mape(test_data$mpg, stacked_predictions$spline), 
           mape(test_data$mpg, stacked_predictions$bspline), 
           mape(test_data$mpg, stacked_predictions$gp), 
           mape(test_data$mpg, final_predictions)) 
) 
 
print(model_performance) 
 
# Plot comparison of the model performances 
ggplot(model_performance, aes(x = Model, y = MAPE)) + 
  geom_bar(stat = "identity", fill = "skyblue") + theme_minimal() + 
  labs(title = "Model Comparison Based on MAPE", x = "Model", y = "MAPE (%)") 
 
# Plot the final predictions against the original points 
comparison_plot <- data.frame( 
  Actual = test_data$mpg, Predicted = final_predictions 
) 
 
ggplot(comparison_plot, aes(x = Actual, y = Predicted)) + 
  geom_point(color = "blue") + 
  geom_abline(slope = 1, intercept = 0, linetype = "dashed", color = "red") + 
  theme_minimal() + 
  labs(title = "Stacked Model: Actual vs. Predicted MPG", 
       x = "Actual MPG", y = "Predicted MPG") 

 
 

 
 



We can see that, at least on this particular metric, the stacked model performs much better than any of 
the individual models alone. 
 
These types of ensemble algorithms are most frequently used in classification models, so we’ll be seeing 
them again as we move on to classification. 
 
   
Resources: 

1. https://daviddalpiaz.github.io/r4sl/ensemble-methods.html 
 

https://daviddalpiaz.github.io/r4sl/ensemble-methods.html

