
Lecture 13 
 
KNN, Distance metrics 
 
Let’s start with an overview of KNN, or K-Nearest Neighbors. 
 
What is KNN? 

• K-Nearest Neighbors (KNN) is a simple, non-parametric, and lazy machine learning algorithm 
primarily used for classification tasks but can also be applied to regression. 

• Non-parametric means that it does not assume a fixed form (or distribution) for the data, 
making it versatile for various types of datasets. 

• Lazy algorithm implies that it makes no assumptions during the training phase and instead waits 
until a query point needs to be predicted. 

 
How Does KNN Work? 

• Given a query point, KNN looks for the 'K' closest data points in the training dataset and uses 
their labels (in classification) or values (in regression) to make a prediction. 

• The core idea: “Birds of a feather flock together.” That is, similar instances are likely to have 
similar labels. 

 
While KNN is typically deployed as a classification algorithm, it can be modified to work as a regression 
algorithm. We’ll look at this case in a future lecture, but for the moment, we’ll stick with the 
classification context. 
 
We looked in a prior lecture at distance metrics for this and other related applications. The way that KNN 
determines closeness or similarity is done by distance metrics. Let’s review some common choices used 
with KNN. 
 
What Are Distance Metrics? 

• The concept of "closeness" is defined using distance metrics. Different distance metrics can lead 
to different results. 

Common Distance Metrics: 

• Euclidean Distance: Most common and intuitive. 𝑑(𝑥, 𝑦) = √∑ (𝑥𝑖 − 𝑦𝑖)
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• Manhattan Distance: Sum of absolute differences. 𝑑(𝑥, 𝑦) = ∑ |𝑥𝑖 − 𝑦𝑖|
𝑛
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• Minkowski Distance: A generalization of both Euclidean and Manhattan. 𝑑(𝑥, 𝑦) =

√∑ |𝑥𝑖 − 𝑦𝑖|
𝑛
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• Chebyshev Distance: The maximum difference along any coordinate dimension. 𝑑(𝑥, 𝑦) =
max(|𝑥𝑖 − 𝑦𝑖|) 

• Cosine Similarity: Measures the cosine of the angle between two vectors (used when the 

magnitude of the vectors matters less than their direction). 𝑑(𝑥, 𝑦) = 1 −
𝑥∙𝑦

‖𝑥‖‖𝑦‖
 

See the earlier lecture for additional options. 
 
Implementation Considerations: 
The choice of distance metric should align with the nature of your data. For example, Euclidean distance 
works well for continuous data, while Hamming distance is more suitable for categorical data. 
 



The next element to consider is the value of k: how many nearest neighbors will be considered? 
Choosing the Value of 'K': 

• The parameter 'K' determines the number of neighbors to consider. 
o Low 'K' value (e.g., K = 1): Can lead to overfitting, as the model might be too sensitive to 

noise in the training data. 
o High 'K' value (e.g., K = total number of samples): Can lead to underfitting, as the model 

becomes too generalized. 
• Common practice: Use cross-validation to select an optimal value for 'K'. 

 
Because of tie-breaking methods, it’s common, particularly in binary classification, to avoid even values 
of k to avoid instability in the model. However, when classification is not binary, choosing the best value 
of k is more flexible, since ties can happen with any value of k except 1. 
 
Impact of Scaling: 

• Distance metrics are sensitive to the scale of the data. Features with larger ranges will dominate 
the distance calculations. 

• Standardization/Normalization: 
o Standardization: Transform features to have a mean of 0 and a standard deviation of 1. 
o Normalization: Transform features to fall within a specific range, typically [0, 1]. 

 
Practical Consideration: Before applying KNN, always scale your features to avoid bias in distance 
calculation. 
 
Scaling variables (however they are scaled, it should be consistent) can have a huge impact on the 
quality of your model. It’s fine to try it without scaling first, but always check scaling to look for 
improvement. 
 
Classification (using packages) 

# Example classification with K = 3 
knn_classification <- function(train_data, test_point, k = 3) { 
  distances <- sqrt(rowSums((train_data[, -1] - test_point) ^ 2)) 
  neighbors <- train_data[order(distances), ][1:k, ] 
  prediction <- names(sort(table(neighbors[, 1]), decreasing = TRUE))[1] 
  return(prediction) 
} 

 
(This is a generic example. We’ll look at the algorithm and an example in more detail.) 
 
Regression (using packages) 

# Example regression with K = 3 
knn_regression <- function(train_data, test_point, k = 3) { 
  distances <- sqrt(rowSums((train_data[, -1] - test_point) ^ 2)) 
  neighbors <- train_data[order(distances), ][1:k, ] 
  prediction <- mean(neighbors[, 1]) 
  return(prediction) 
} 

 



The main difference between regression and classification is in the final step of the algorithm. In 
classification, the nearest neighbors “vote” on which class the new element belongs to, with the one 
with the most votes winning (subject to potential tiebreaking). In regression, the nearest neighbors are 
averaged together to get the regression prediction. 
 
Advantages of KNN: 

• Simplicity: Easy to understand and implement. 
• Versatility: Can be used for classification and regression. 
• No Training Phase: Works directly on raw data, which can be advantageous in some scenarios. 

 
Disadvantages: 

• Computationally Expensive: Particularly with large datasets, as distance calculations must be 
repeated for each prediction. 

• Memory Intensive: Stores the entire training dataset. 
• Sensitive to Noise: Outliers can significantly affect the prediction. 

 
Improvements: 

• KD-Trees or Ball Trees for efficient neighbor searches. 
• Weighted KNN: Assign weights to neighbors based on their distance, giving closer neighbors 

more influence on the prediction. 
 
Let’s start with classification and look at two examples, one where we employ the Euclidean distance 
metric and a second that uses a different one. 
 
Euclidean distance: 
 

# Prepare data 
set.seed(123) 
mtcars$am <- as.factor(mtcars$am)  # Convert 'am' to a factor (for classification) 
 
# Use 'hp', 'wt', and 'qsec' as predictors and 'am' as the target 
data <- mtcars[, c("hp", "wt", "qsec", "am")] 
 
# Scale the predictors 
data[, 1:3] <- scale(data[, 1:3]) 
 
# Euclidean distance function 
euclidean_distance <- function(x1, x2) { 
  sqrt(sum((x1 - x2) ^ 2)) 
} 
 
# KNN function using Euclidean distance 
knn_euclidean <- function(train_data, test_point, k = 3) { 
  distances <- apply(train_data[, -ncol(train_data)], 1, function(row) euclidean_distance(row, 
test_point)) 
  sorted_indices <- order(distances) 
  nearest_neighbors <- train_data[sorted_indices[1:k], ] 
   



  # Return the majority vote for classification 
  prediction <- names(sort(table(nearest_neighbors[, ncol(nearest_neighbors)]), decreasing = 
TRUE))[1] 
   
  return(as.numeric(prediction)) 
} 
 
# Split the data into train and test sets 
train_data <- data[-1, ]  # Use all rows except the first as training data 
test_point <- data[1, -4]  # Use the first row (without the target column) as the test point 
 
# Predict using KNN with Euclidean distance 
predicted_value <- knn_euclidean(train_data, test_point, k = 3) 
predicted_value 

 
For the second case, let’s try cosine similarity. 
 

# Cosine similarity function 
cosine_similarity <- function(x1, x2) { 
  sum(x1 * x2) / (sqrt(sum(x1 ^ 2)) * sqrt(sum(x2 ^ 2))) 
} 
 
# Split the data into train and test sets 
train_data <- data[-1, ]  # Use all rows except the first as training data 
test_point <- data[1, -4]  # Use the first row (without the target column) as the test point 
 
# Predict using KNN with Euclidean distance 
predicted_value <- knn_euclidean(train_data, test_point, k = 3) 
predicted_value 
 
# KNN function using Cosine Similarity 
knn_cosine <- function(train_data, test_point, k = 3) { 
  similarities <- apply(train_data[, -ncol(train_data)], 1, function(row) cosine_similarity(row, 
test_point)) 
  sorted_indices <- order(-similarities)  # Sort in decreasing order because higher cosine similarity 
is better 
  nearest_neighbors <- train_data[sorted_indices[1:k], ] 
   
  # Return the majority vote for classification 
  prediction <- names(sort(table(nearest_neighbors[, ncol(nearest_neighbors)]), decreasing = 
TRUE))[1] 
   
  return(as.numeric(prediction)) 
} 
 
# Predict using KNN with Cosine similarity 
predicted_value_cosine <- knn_cosine(train_data, test_point, k = 3) 
predicted_value_cosine 



In this example, the first row of mtcars was removed as a test point, and the model was built on the 
other available datapoints. Both methods of distance metrics correctly predicted the value of 1 for the 
am variable (compare with the first row of mtcars for verification). 
 
We can also include metrics for comparison if we tweak this a bit. ROC and AUC are most easily done on 
binary problems, so let’s look at those first, before we move on a case with three or more classes. 
 

# Load the mtcars dataset 
data(mtcars) 
 
# Convert 'am' to a factor for classification 
mtcars$am <- as.factor(mtcars$am) 
 
# Select the numeric predictor variables and normalize them 
mtcars[, c("mpg", "hp")] <- scale(mtcars[, c("mpg", "hp")]) 
 
# Split the data into training and testing sets (70% train, 30% test) 
set.seed(123) 
train_indices <- sample(1:nrow(mtcars), 0.7 * nrow(mtcars)) 
train_data <- mtcars[train_indices, c("mpg", "hp", "am")] 
test_data <- mtcars[-train_indices, c("mpg", "hp", "am")] 
 
euclidean_distance <- function(x1, x2) { 
  sqrt(sum((as.numeric(x1) - as.numeric(x2)) ^ 2)) 
} 
 
cosine_similarity <- function(x1, x2) { 
  sum(as.numeric(x1) * as.numeric(x2)) / (sqrt(sum(as.numeric(x1)^2)) * 
sqrt(sum(as.numeric(x2)^2))) 
} 
 
knn_classifier <- function(train_data, test_point, k = 3, distance_func) { 
  distances <- apply(train_data[, -ncol(train_data)], 1, function(row) distance_func(row, 
test_point)) 
   
  # Determine whether to sort distances ascending or descending 
  if (identical(distance_func, cosine_similarity)) { 
    nearest_neighbors <- order(distances, decreasing = TRUE) 
  } else { 
    nearest_neighbors <- order(distances) 
  } 
   
  nearest_neighbors <- train_data[nearest_neighbors[1:k], "am"] 
   
  # Majority voting 
  prediction <- as.character(sort(table(nearest_neighbors), decreasing = TRUE)[1]) 
  return(prediction) 
} 



 
predict_knn <- function(train_data, test_data, k = 3, distance_func) { 
  predictions <- sapply(1:nrow(test_data), function(i) { 
    knn_classifier(train_data, test_data[i, -ncol(test_data)], k, distance_func) 
  }) 
  return(as.factor(predictions)) 
} 
 
# Predictions using Euclidean distance 
predictions_euclidean <- predict_knn(train_data, test_data, k = 3, distance_func = 
euclidean_distance) 
 
# Predictions using Cosine similarity 
predictions_cosine <- predict_knn(train_data, test_data, k = 3, distance_func = cosine_similarity) 
 
library(caret) 
 
evaluate_model <- function(predictions, true_labels) { 
  confusion <- confusionMatrix(predictions, true_labels) 
  accuracy <- confusion$overall["Accuracy"] 
  f1 <- confusion$byClass["F1"] 
   
  return(list(Confusion_Matrix = confusion$table, Accuracy = accuracy, F1_Score = f1)) 
} 
 
library(caret) 
 
evaluate_model <- function(predictions, true_labels) { 
  # Ensure that predictions and true labels have the same levels 
  levels(predictions) <- levels(true_labels) 
   
  # Calculate confusion matrix, accuracy, and F1 score 
  confusion <- confusionMatrix(predictions, true_labels) 
  accuracy <- confusion$overall["Accuracy"] 
  f1 <- confusion$byClass["F1"] 
   
  return(list(Confusion_Matrix = confusion$table, Accuracy = accuracy, F1_Score = f1)) 
} 
 
# Euclidean results 
euclidean_results <- evaluate_model(predictions_euclidean, test_data$am) 
print("Euclidean Results") 
print(euclidean_results) 
 
# Cosine results 
cosine_results <- evaluate_model(predictions_cosine, test_data$am) 
print("Cosine Results") 
print(cosine_results) 



 
library(pROC) 
 
plot_roc_auc <- function(predictions, true_labels, title) { 
  roc_obj <- roc(as.numeric(true_labels) - 1, as.numeric(predictions) - 1) 
  auc_value <- auc(roc_obj) 
   
  plot(roc_obj, main = paste("ROC Curve:", title)) 
  return(auc_value) 
} 
 
# ROC and AUC for Euclidean 
auc_euclidean <- plot_roc_auc(predictions_euclidean, test_data$am, "Euclidean Distance") 
 
# ROC and AUC for Cosine 
auc_cosine <- plot_roc_auc(predictions_cosine, test_data$am, "Cosine Similarity") 

 
 
Let’s look at an example that generates some classification metrics for us, so that we can compare how 
well various distance metrics work. We’ll also use the iris dataset which has three classes to work with. 
 

# Load the dataset 
data(iris) 
set.seed(123) 
 
# Convert species to a factor (for classification) 
iris$Species <- as.factor(iris$Species) 
 
# Scale the predictors 
iris[, 1:4] <- scale(iris[, 1:4]) 
 
# Split the data into training and testing sets (70% train, 30% test) 
train_indices <- sample(1:nrow(iris), 0.7 * nrow(iris)) 
train_data <- iris[train_indices, ] 
test_data <- iris[-train_indices, ] 
 
# Manhattan distance function 
manhattan_distance <- function(x1, x2) { 
  sum(abs(x1 - x2)) 
} 
 



# Minkowski distance function with p = 3 
minkowski_distance <- function(x1, x2, p = 3) { 
  sum(abs(x1 - x2) ^ p)^(1/p) 
} 
 
# Chebyshev distance function 
chebyshev_distance <- function(x1, x2) { 
  max(abs(x1 - x2)) 
} 
 
# General KNN function 
knn_general <- function(train_data, test_point, k = 3, distance_func) { 
  distances <- apply(train_data[, -ncol(train_data)], 1, function(row) distance_func(row, 
test_point)) 
  sorted_indices <- order(distances) 
  nearest_neighbors <- train_data[sorted_indices[1:k], ] 
   
  # Return the majority vote for classification 
  prediction <- names(sort(table(nearest_neighbors[, ncol(nearest_neighbors)]), decreasing = 
TRUE))[1] 
   
  return(prediction) 
} 
 
# Function to calculate evaluation metrics 
evaluate_knn <- function(train_data, test_data, k, distance_func) { 
  predictions <- sapply(1:nrow(test_data), function(i) { 
    knn_general(train_data, test_data[i, -ncol(test_data)], k, distance_func) 
  }) 
   
  true_labels <- test_data$Species 
   
  # Calculate confusion matrix 
  confusion_matrix <- table(Predicted = predictions, Actual = true_labels) 
   
  # Calculate accuracy 
  accuracy <- sum(diag(confusion_matrix)) / sum(confusion_matrix) 
   
  # Calculate F1 score (macro-averaged) 
  f1_score <- mean(sapply(levels(true_labels), function(class) { 
    precision <- confusion_matrix[class, class] / sum(confusion_matrix[class, ]) 
    recall <- confusion_matrix[class, class] / sum(confusion_matrix[, class]) 
    f1 <- ifelse(precision + recall > 0, 2 * precision * recall / (precision + recall), 0) 
    return(f1) 
  })) 
   
  list(predictions = predictions, accuracy = accuracy, f1_score = f1_score, confusion_matrix = 
confusion_matrix) 



} 
 
# Evaluate with Manhattan Distance 
results_manhattan <- evaluate_knn(train_data, test_data, k = 5, distance_func = 
manhattan_distance) 
results_manhattan$accuracy 
results_manhattan$f1_score 
results_manhattan$confusion_matrix 
 
# Evaluate with Minkowski Distance (p = 3) 
results_minkowski <- evaluate_knn(train_data, test_data, k = 5, distance_func = function(x1, x2) 
minkowski_distance(x1, x2, p = 3)) 
results_minkowski$accuracy 
results_minkowski$f1_score 
results_minkowski$confusion_matrix 
 
# Evaluate with Chebyshev Distance 
results_chebyshev <- evaluate_knn(train_data, test_data, k = 5, distance_func = 
chebyshev_distance) 
results_chebyshev$accuracy 
results_chebyshev$f1_score 
results_chebyshev$confusion_matrix 
 
# Prepare data for plotting 
plot_data <- data.frame( 
  Metric = rep(c("Accuracy", "F1 Score"), each = 3), 
  Value = c(results_manhattan$accuracy, results_minkowski$accuracy, 
results_chebyshev$accuracy, 
            results_manhattan$f1_score, results_minkowski$f1_score, results_chebyshev$f1_score), 
  Distance = factor(rep(c("Manhattan", "Minkowski", "Chebyshev"), 2), levels = c("Manhattan", 
"Minkowski", "Chebyshev")) 
) 
 
# Plot the results 
library(ggplot2) 
 
ggplot(plot_data, aes(x = Distance, y = Value, fill = Metric)) + 
  geom_bar(stat = "identity", position = "dodge") + 
  theme_minimal() + 
  labs(title = "Comparison of KNN with Different Distance Metrics", y = "Score", x = "Distance 
Metric") + 
  scale_fill_manual(values = c("Accuracy" = "blue", "F1 Score" = "red")) 



 
 
As it turns out here, the metrics turn out largely the same for all three distance metrics, but there is a 
slight difference in one of the confusion matrices. The important thing to keep in mind is that you can’t 
know which distance metric will produce the best results (or the same results) unless you test them. 
 
 
 
Resources: 

1. https://www.kdnuggets.com/2020/11/most-popular-distance-metrics-knn.html 
2. https://www.analyticsvidhya.com/blog/2021/08/how-knn-uses-distance-measures/ 
3. https://medium.com/@luigi.fiori.lf0303/distance-metrics-and-k-nearest-neighbor-knn-

1b840969c0f4 
4. https://towardsdatascience.com/knn-k-nearest-neighbors-1-a4707b24bd1d 
5. https://www.linkedin.com/advice/3/what-most-effective-distance-metrics-optimizing-xndwc 
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