
Lecture 20

K-Means

K-Means is one of the most commonly used clustering algorithms, particularly in unsupervised machine
learning. The goal of K-Means is to partition a dataset into 𝐾 distinct, non-overlapping subsets (clusters)
where each data point belongs to the cluster with the nearest mean (also called the cluster centroid).

Algorithm Steps

1. Initialize Centroids: Choose 𝐾 initial centroids (cluster centers) randomly from the data points,
or use some other method (e.g., k-means++ for better initialization).

2. Assign Data Points to Clusters: Assign each data point to the nearest centroid based on a chosen
distance metric (typically Euclidean distance). This creates 𝐾 clusters.

3. Update Centroids: Compute the new centroid of each cluster by taking the mean of all data
points assigned to that cluster.

4. Iterate: Repeat the assignment and update steps until the centroids no longer change
significantly, or until a predefined number of iterations is reached.

5. Convergence: The algorithm converges when the assignments no longer change, or the
centroids do not move significantly between iterations.

Strengths of K-Means

• Simplicity: The algorithm is easy to implement and computationally efficient, especially with a
small number of clusters.

• Scalability: It scales well to large datasets.
• Interpretability: Results are easy to interpret, with each cluster represented by its centroid.
• Efficiency: The time complexity is linear with respect to the number of data points, making it

suitable for large datasets.

Weaknesses of K-Means

• Predefined K: The number of clusters 𝐾 must be specified before running the algorithm, which
might not be known in advance.

• Sensitivity to Initialization: The final clusters can vary depending on the initial selection of
centroids. Poor initialization can lead to suboptimal clustering.

• Sensitivity to Outliers: Outliers can heavily influence the mean and thus distort the resulting
clusters.

• Assumes Spherical Clusters: K-Means assumes clusters are spherical and equally sized, which
may not be true for all datasets.

• Convergence to Local Minima: The algorithm can converge to a local minimum of the objective
function, rather than the global minimum.

Choosing the Number of Clusters

• Elbow Method: Plot the within-cluster sum of squares (WCSS) against the number of clusters.
The optimal KKK is often at the "elbow" point where the rate of decrease sharply slows down.

• Silhouette Score: Measures how similar a point is to its own cluster compared to other clusters.
The score ranges from -1 to 1, with higher values indicating better-defined clusters.

Applications of K-Means

• Market Segmentation: Grouping customers based on purchasing behavior.

• Image Compression: Reducing the number of colors in an image by clustering pixel values.
• Document Clustering: Organizing a collection of documents into clusters based on similarity.
• Anomaly Detection: Identifying data points that do not belong to any cluster (outliers).

Visualizing K-Means Clustering
K-Means clustering results can be visualized using scatter plots (in 2D or 3D) where each cluster is
represented by a different color, and centroids can be marked. Additionally, the convergence process can
be illustrated by showing the movement of centroids over iterations.

K-Means Variants

• K-Means++: Improves the initialization step by spreading out the initial centroids, reducing the
likelihood of poor clustering results.

• Mini-Batch K-Means: A variation of K-Means that processes the data in small batches, making it
faster and more suitable for large datasets.

K-Means is a foundational technique in unsupervised learning, providing a simple yet powerful method
for discovering patterns in data. Despite its limitations, it remains widely used in various domains due to
its efficiency and ease of use.

In K-Means clustering, the choice of distance measure plays a critical role in determining the shape and
structure of the clusters. By default, K-Means typically uses Euclidean distance, which measures the
straight-line distance between two points in a multidimensional space. However, other distance
measures can be used depending on the characteristics of the data and the desired clustering outcome.

Effects of Modifying the Distance Measure

1. Euclidean Distance (Standard):
o Behavior: Euclidean distance tends to form spherical clusters because it measures the

straight-line distance between points.
o Effect: Clusters tend to be compact and of similar size, and the algorithm is sensitive to

differences in scale across dimensions. It works well when clusters are well-separated
and roughly circular in shape.

2. Manhattan Distance (L1 Norm, City Block Distance):
o Behavior: Manhattan distance measures the sum of absolute differences between

coordinates of two points.
o Effect: Clusters tend to be more box-like (aligned with the axes of the feature space)

rather than spherical. This distance measure is more robust to outliers in individual
dimensions, especially when dealing with high-dimensional data. It also emphasizes the
structure of data when features are not necessarily on the same scale.

3. Minkowski Distance (Generalization of Euclidean and Manhattan):
o Behavior: Minkowski distance is a generalization of Euclidean and Manhattan distances,

defined as 𝑑(𝑥, 𝑦) = √∑ |𝑥𝑖 − 𝑦𝑖|
𝑝𝑛

𝑖=1
𝑝

o Effect: When 𝑝 = 1, it becomes Manhattan distance, and when 𝑝 = 2, it is equivalent to
Euclidean distance. Varying the parameter 𝑝 allows a balance between the properties of
Euclidean and Manhattan distances, giving more flexibility in shaping clusters.

4. Cosine Similarity:
o Behavior: Cosine similarity measures the cosine of the angle between two vectors, which

essentially compares the orientation (direction) rather than the magnitude.

o Effect: This measure is useful when the magnitude of the vectors is less important than
their direction. It is often used in text mining or when dealing with high-dimensional
sparse data. Clusters formed using cosine similarity are less influenced by the magnitude
of the features and are more about the directionality, leading to clusters that may be
more aligned along certain axes.

5. Mahalanobis Distance:
o Behavior: Mahalanobis distance accounts for the correlation between variables and

scales the distance according to the variance-covariance matrix of the data.
o Effect: This measure is useful when the data has correlated features or different scales,

as it considers the distribution of the data. Clusters are more elliptical, and this method
works well when the clusters have different shapes and variances.

6. Chebyshev Distance (Maximum or L∞ Norm):
o Behavior: Chebyshev distance measures the maximum difference along any coordinate

dimension.
o Effect: Clusters tend to form hypercubes or bounding boxes. This distance is particularly

useful when the data has sharp boundaries or when the largest single difference is more
important than aggregate differences across dimensions.

Implications of Using Different Distance Measures

1. Cluster Shape and Size: Different distance measures can lead to clusters with different shapes.
For example, Euclidean distance tends to form spherical clusters, while Manhattan distance can
result in clusters aligned with the axes.

2. Sensitivity to Outliers: Some distance measures, like Euclidean distance, are sensitive to outliers
because they are based on squared differences, which amplify large deviations. Others, like
Manhattan distance, are more robust to outliers.

3. Interpretation of Results: The choice of distance measure affects the interpretability of the
clusters. In some cases, different measures might reveal different aspects of the data, such as
similarity in orientation (cosine similarity) versus similarity in magnitude (Euclidean distance).

4. Suitability for Data Type: Some distance measures are better suited for certain types of data. For
example, cosine similarity is often used in text data or high-dimensional data, while Mahalanobis
distance is suitable for data with correlated variables.

5. Computational Complexity: Different distance measures can also vary in computational
complexity. For example, calculating Mahalanobis distance requires inversion of the covariance
matrix, which can be computationally expensive for large datasets.

Modifying the distance measure in K-Means clustering can significantly impact the resulting clusters in
terms of their shape, size, and overall structure. The choice of distance measure should be guided by the
specific characteristics of the data, the goals of the analysis, and the desired properties of the clusters.
Experimenting with different distance measures and evaluating the results using validation metrics can
help determine the best approach for a given dataset.

K-Means clustering is known to be sensitive to the initialization of centroids, which can lead to
suboptimal clustering results if the centroids are poorly initialized. Fortunately, there are several
methods and strategies to reduce this sensitivity and improve the stability and quality of the clusters:

1. K-Means++ Initialization

• Description: K-Means++ is a smart centroid initialization technique designed to spread out the
initial cluster centers. The first centroid is chosen randomly, but each subsequent centroid is

selected with a probability proportional to its squared distance from the closest already-chosen
centroid.

• Effect: This method helps ensure that the centroids are well-separated initially, which typically
leads to faster convergence and better clustering results compared to random initialization.

• Implementation: K-Means++ is often the default initialization method in many K-Means
implementations in software libraries like Scikit-Learn in Python or kmeans in R.

2. Multiple Runs and Averaging (Ensemble Clustering)

• Description: This method involves running the K-Means algorithm multiple times with different
random initializations and then choosing the best clustering result based on a defined metric
(such as the lowest within-cluster sum of squares, WCSS).

• Effect: By averaging the results over multiple runs, this approach reduces the likelihood of
getting stuck in local minima due to poor initialization.

• Implementation: Many K-Means implementations allow you to specify the number of runs (often
called n_init), and they automatically return the best result.

3. Hierarchical Agglomerative Clustering Initialization

• Description: Use the results of a hierarchical agglomerative clustering algorithm to initialize the
centroids. After performing hierarchical clustering, the centroids of the resulting clusters can be
used as the initial centroids for K-Means.

• Effect: This method leverages the hierarchical structure of the data to find a good set of initial
centroids, reducing the dependency on random initialization.

• Implementation: Perform hierarchical clustering first, and then extract the centroids of the
clusters as the starting points for K-Means.

4. Density-Based Initialization

• Description: This method involves initializing centroids in regions of high data density. A common
approach is to divide the data space into a grid and select initial centroids from the densest
regions.

• Effect: By starting in dense areas, this method increases the likelihood that the centroids are
representative of the data distribution, leading to more stable clustering outcomes.

• Implementation: This method is less common in standard libraries but can be implemented
manually by identifying high-density regions and using them for initialization.

5. Maximin Initialization

• Description: Start by selecting the first centroid randomly. Then, for each subsequent centroid,
choose the point that is farthest from the previously selected centroids.

• Effect: Similar to K-Means++, this method helps in spreading out the initial centroids and ensures
that they are well-separated, which typically leads to better convergence.

• Implementation: This method is a heuristic and can be implemented by iteratively computing
distances and selecting the farthest points as centroids.

6. Use of Robust Clustering Metrics

• Description: Instead of relying solely on the sum of squared distances to measure the quality of
clustering, consider using more robust metrics, such as silhouette score, which accounts for both
cohesion (how close points in a cluster are) and separation (how distinct a cluster is from
others).

• Effect: By choosing the initialization that maximizes a more robust metric, the sensitivity to
initialization can be reduced.

• Implementation: After multiple K-Means runs, evaluate the clustering result using a metric like
the silhouette score and choose the best initialization.

7. Global Optimization Techniques

• Description: Techniques such as simulated annealing or genetic algorithms can be used to
optimize the placement of centroids in a more global sense.

• Effect: These methods can escape local minima by exploring a broader search space for centroid
initialization, although they are computationally more expensive.

• Implementation: Global optimization methods are typically more advanced and may require
custom implementation, although some clustering libraries might offer these as options.

Summary

• K-Means++ is the most widely-used method due to its simplicity and effectiveness.
• Multiple runs with random initializations, combined with a robust metric for choosing the best

run, is a common and straightforward approach. (This method is frequently a feature of built-in
k-means packages.)

• Other techniques like hierarchical clustering initialization and density-based initialization can
further improve results, especially when dealing with more complex data distributions.

By using one or a combination of these methods, you can significantly reduce the sensitivity of K-Means
to the initialization of centroids, leading to more consistent and reliable clustering results.

Let’s look at the code for the basic algorithm using Euclidean distance. K-Means is a clustering algorithm
and can be used in an unsupervised fashion to discover clusters in the data, but it can also be used in a
semi-supervised way as a classification method.

Load the iris dataset
data(iris)

Extract the feature matrix and the true labels
iris_data <- iris[, 1:4] # Only the numeric data
true_labels <- iris[, 5] # The species (true labels)

set.seed(123) # Set seed for reproducibility

Euclidean distance function
euclidean_distance <- function(x, y) {
 sqrt(sum((x - y) ^ 2))
}

K-Means algorithm
k_means <- function(data, k, max_iter = 100) {
 # Randomly initialize the centroids by selecting k points from the dataset
 centroids <- data[sample(1:nrow(data), k),]

 # Create a vector to store the cluster assignments

 clusters <- rep(0, nrow(data))

 # Iterative optimization
 for (iter in 1:max_iter) {
 # Step 1: Assign clusters
 for (i in 1:nrow(data)) {
 distances <- apply(centroids, 1, function(centroid) euclidean_distance(data[i,], centroid))
 clusters[i] <- which.min(distances)
 }

 # Step 2: Update centroids
 new_centroids <- matrix(NA, nrow = k, ncol = ncol(data))
 for (j in 1:k) {
 if (sum(clusters == j) == 0) {
 # In case a cluster is empty, reinitialize that centroid randomly
 new_centroids[j,] <- data[sample(1:nrow(data), 1),]
 } else {
 new_centroids[j,] <- colMeans(data[clusters == j, , drop = FALSE])
 }
 }

 # Check for convergence (if centroids don't change)
 if (all(new_centroids == centroids)) {
 break
 }

 centroids <- new_centroids
 }

 list(centroids = centroids, clusters = clusters)
}

Run the K-Means algorithm
k = 3
kmeans_result <- k_means(iris_data, k)

Extract the cluster assignments
predicted_clusters <- kmeans_result$clusters

Convert predicted_clusters to factor with levels matching true_labels
predicted_clusters <- as.factor(predicted_clusters)

Assign appropriate labels to the predicted clusters
This step requires a bit of manual inspection to determine which cluster corresponds to which
species.
Assuming the clusters 1, 2, 3 correspond to species "setosa", "versicolor", "virginica"
levels(predicted_clusters) <- levels(true_labels)

Now create the confusion matrix
conf_matrix <- confusionMatrix(predicted_clusters, true_labels)

Print the confusion matrix
print(conf_matrix)

Calculate overall accuracy
accuracy <- sum(diag(conf_matrix$table)) / sum(conf_matrix$table)
cat("Overall Accuracy: ", accuracy, "\n")

Assign species names based on which cluster has the majority of each species
library(dplyr)

Create a mapping of clusters to species based on the majority vote
mapping <- data.frame(Cluster = predicted_clusters, Species = true_labels) %>%
 group_by(Cluster) %>%
 summarize(Majority_Species = names(which.max(table(Species))))

Apply the mapping to the predicted clusters
predicted_labels <- mapping$Majority_Species[match(predicted_clusters, mapping$Cluster)]

Convert predicted labels to a factor with the same levels as true labels
predicted_labels <- factor(predicted_labels, levels = levels(true_labels))

Confusion matrix with updated labels
conf_matrix <- confusionMatrix(predicted_labels, true_labels)

Print the confusion matrix
print(conf_matrix)

Calculate overall accuracy
accuracy <- sum(diag(conf_matrix$table)) / sum(conf_matrix$table)
cat("Overall Accuracy: ", accuracy, "\n")

PCA for visualization
pca_result <- prcomp(iris_data, scale. = TRUE)
iris_pca <- data.frame(pca_result$x[, 1:2], Cluster = as.factor(predicted_clusters), Species =
true_labels)

Plot the clusters
library(ggplot2)
ggplot(iris_pca, aes(x = PC1, y = PC2, color = Cluster, shape = Species)) +
 geom_point(size = 3) +
 labs(title = "K-Means Clustering on Iris Dataset",
 x = "Principal Component 1", y = "Principal Component 2") +
 theme_minimal() +
 theme(legend.position = "bottom")

In this code example, we’ve used PCA to create a plot, however, you can also just select two of the
original variables for this purpose. This code also includes two methods for creating the confusion
matrix.

Running K-Means multiple times with different random initializations of centroids is a common
technique to reduce sensitivity to the initial starting conditions. This technique is often referred to as the
"Multiple Runs" or "Random Restarts" method. The goal is to choose the best solution (clustering) from
these multiple runs based on a criterion like the total within-cluster sum of squares (WCSS).

Load necessary library
library(dplyr)
library(caret)
library(ggplot2)

Define the Euclidean distance function
euclidean_distance <- function(x1, x2) {
 return(sqrt(sum((x1 - x2)^2)))
}

Define the K-Means function
kmeans_custom <- function(data, k, max_iters = 100) {
 # Randomly select k initial centroids
 set.seed(Sys.time()) # Change the seed based on current time for randomness
 centroids <- data[sample(1:nrow(data), k),]

 for (i in 1:max_iters) {
 # Assign clusters based on closest centroid
 clusters <- apply(data, 1, function(row) {
 distances <- apply(centroids, 1, euclidean_distance, x2 = row)
 return(which.min(distances))
 })

 # Calculate new centroids
 new_centroids <- sapply(1:k, function(cluster) {
 return(colMeans(data[clusters == cluster,]))
 })

 new_centroids <- t(new_centroids)

 # Check for convergence (if centroids do not change)
 if (all(centroids == new_centroids)) {
 break
 }

 centroids <- new_centroids
 }

 return(list(clusters = clusters, centroids = centroids))
}

Function to calculate the Within-Cluster Sum of Squares (WCSS)
calculate_wcss <- function(data, clusters, centroids) {
 wcss <- 0
 for (i in 1:nrow(data)) {
 cluster <- clusters[i]
 centroid <- centroids[cluster,]
 wcss <- wcss + sum((data[i,] - centroid)^2)
 }
 return(wcss)
}

Multiple runs K-Means
multiple_runs_kmeans <- function(data, k, num_runs = 10, max_iters = 100) {
 best_wcss <- Inf
 best_clusters <- NULL
 best_centroids <- NULL

 for (run in 1:num_runs) {
 set.seed(run) # Set a seed for reproducibility
 kmeans_result <- kmeans_custom(data, k, max_iters)
 wcss <- calculate_wcss(data, kmeans_result$clusters, kmeans_result$centroids)

 if (wcss < best_wcss) {
 best_wcss <- wcss
 best_clusters <- kmeans_result$clusters
 best_centroids <- kmeans_result$centroids
 }
 }

 return(list(clusters = best_clusters, centroids = best_centroids, wcss = best_wcss))
}

Prepare the iris dataset (excluding the species "setosa" and using only numeric variables)
iris_data <- iris[iris$Species != "setosa",]
iris_data <- iris_data %>% select(-Species)
true_labels <- factor(iris[iris$Species != "setosa",]$Species)

Apply K-Means with multiple runs
k <- 2 # Setting k=2 for simplicity
num_runs <- 10
kmeans_result <- multiple_runs_kmeans(iris_data, k, num_runs)

Manually adjust predicted cluster labels to match true labels
predicted_clusters <- factor(kmeans_result$clusters, levels = 1:k)
levels(predicted_clusters) <- levels(true_labels)

Confusion matrix comparison
conf_matrix <- confusionMatrix(predicted_clusters, true_labels)
print(conf_matrix)

Visualize the best clustering result
iris_plot_data <- iris[iris$Species != "setosa",]
iris_plot_data$Cluster <- predicted_clusters

ggplot(iris_plot_data, aes(x = Petal.Length, y = Petal.Width, color = Cluster)) +
 geom_point(size = 3) +
 labs(title = "K-Means Clustering Result", x = "Petal Length", y = "Petal Width") +
 theme_minimal()

Output the best WCSS
cat("Best WCSS from multiple runs: ", kmeans_result$wcss, "\n")

We would need more time to go over the other improvements made to k-means that are already out
there, but this should give you some sense of the power of k-means, and why it’s so popular, as well as
the options that may be available to you in the built-in packages.

Resources:

1. https://www.datanovia.com/en/lessons/k-means-clustering-in-r-algorith-and-practical-
examples/

2. https://www.datacamp.com/tutorial/k-means-clustering-r
3. https://www.geeksforgeeks.org/k-means-clustering-in-r-programming/
4. https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/kmeans

https://www.datanovia.com/en/lessons/k-means-clustering-in-r-algorith-and-practical-examples/
https://www.datanovia.com/en/lessons/k-means-clustering-in-r-algorith-and-practical-examples/
https://www.datacamp.com/tutorial/k-means-clustering-r
https://www.geeksforgeeks.org/k-means-clustering-in-r-programming/
https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/kmeans

5. https://towardsdatascience.com/k-means-clustering-concepts-and-implementation-in-r-for-
data-science-32cae6a3ceba

6. https://medium.com/@ahmadbintangarif/k-means-clustering-with-r-abdb10448cc1

https://towardsdatascience.com/k-means-clustering-concepts-and-implementation-in-r-for-data-science-32cae6a3ceba
https://towardsdatascience.com/k-means-clustering-concepts-and-implementation-in-r-for-data-science-32cae6a3ceba
https://medium.com/@ahmadbintangarif/k-means-clustering-with-r-abdb10448cc1

