
Lecture 21 
 
Spectral Clustering 
 
Spectral Clustering is a clustering technique that uses the eigenvalues (spectrum) of a similarity matrix 
(derived from the data) to perform dimensionality reduction before applying a standard clustering 
algorithm like K-means. Unlike traditional clustering methods that operate directly on the data points, 
spectral clustering makes use of the structure of the data as captured in a graph, where nodes represent 
data points and edges represent the similarity between them. 
 
How Spectral Clustering Works 

1. Construct a Similarity Graph: 
o Represent the data as a graph. Each data point is a node, and edges between nodes 

represent the similarity between them. 
o The similarity can be computed using different methods, such as the Gaussian (RBF) 

kernel or nearest neighbors. 
 

2. Compute the Laplacian Matrix: 
o From the similarity graph, compute the graph Laplacian matrix. There are different types 

of Laplacians (e.g., unnormalized, normalized). 
o The Laplacian matrix encapsulates the structure of the graph, including connections 

between data points. 
 

3. Eigen Decomposition: 
o Compute the eigenvalues and eigenvectors of the Laplacian matrix. 
o Select the first 𝑘 eigenvectors (where 𝑘 is the desired number of clusters) to form a new 

representation of the data. This step is akin to dimensionality reduction. 
 

4. Clustering in the Reduced Space: 
o Treat the rows of the matrix of selected eigenvectors as new data points in a lower-

dimensional space. 
o Apply a standard clustering algorithm like K-means to these new data points to obtain 

the final clusters. 
 

5. Assign Clusters: The resulting clusters from the clustering algorithm are used as the final clusters 
for the original data points. 

 
Advantages of Spectral Clustering 

• Handles Non-Convex Clusters: Unlike K-means, which assumes convex cluster shapes, spectral 
clustering can handle more complex and non-convex structures. 

• Incorporates Graph-Based Structure: It can leverage graph-based relationships, making it more 
flexible and applicable in situations where other clustering methods may struggle. 

• Flexibility with Similarity Measures: Different types of similarity measures can be employed, 
making it adaptable to various kinds of data. 

 
Disadvantages of Spectral Clustering 

• Computationally Expensive: The eigen decomposition step, which involves computing 
eigenvectors and eigenvalues, can be computationally intensive, especially for large datasets. 



• Choice of Similarity Measure and Parameters: The results of spectral clustering can be sensitive 
to the choice of similarity measure and the parameters used to construct the graph (e.g., the 
value of sigma in the Gaussian kernel or the number of nearest neighbors). 

• Number of Clusters (k) Must Be Pre-Specified: Similar to K-means, spectral clustering requires 
specifying the number of clusters beforehand. 

 
Applications of Spectral Clustering 

• Image Segmentation: Commonly used in computer vision for segmenting images into different 
regions. 

• Graph Partitioning: Applied in areas where the data can naturally be represented as a graph, 
such as social networks or biological networks. 

• Data Mining: Useful in finding patterns and structures in high-dimensional data. 
 
Example Algorithms 

1. Normalized Cut (NCut): A popular form of spectral clustering used in image segmentation. It 
partitions a graph based on minimizing a normalized measure of the graph's cut. 

2. Shi-Malik Algorithm: A specific algorithm used for image segmentation based on spectral 
clustering. 

 
Let’s look at an example of spectral clustering using an example on the iris dataset. 
 

# Load necessary library 
library(kernlab) 
 
# Load iris dataset (using only numeric variables) 
data(iris) 
iris_data <- iris[, -5]  # Remove the species column for clustering 
 
# Check the dimensions of the data to ensure correctness 
print(dim(iris_data))  # Should return 150 rows and 4 columns 
 
# Apply spectral clustering 
# Ensure that centers parameter is set correctly 
sc <- specc(as.matrix(iris_data), centers = 3) 
 
# Check the length of the clustering result 
length(sc)  # This should return 150, not 4 
 
# Check the length of the true labels 
length(iris$Species)  # Should be 150 
 
# If the lengths match, create the table 
if(length(sc) == length(iris$Species)) { 
  clustering_results <- table(sc, iris$Species) 
  print(clustering_results) 
} else { 
  stop("The lengths of the clustering results and true labels do not match.") 
} 



 
# Assuming all above steps are correct 
# Apply spectral clustering again 
sc <- specc(as.matrix(iris_data), centers = 3) 
 
# Check the output 
print(length(sc))  # Should be 150 
 
# Generate confusion matrix if lengths are correct 
if (length(sc) == 150) { 
  clustering_results <- table(sc, iris$Species) 
  print(clustering_results) 
} else { 
  print("The lengths of the clustering results and the true labels do not match.") 
} 
 
# Visualization 
plot(iris_data, col = as.factor(sc), pch = 19, main = "Spectral Clustering on Iris Dataset") 

 
 
What we see happening here is that spectral clustering did less well on this dataset than did k-means in 
the previous lecture. This could be because the clusters in the iris dataset are actually convex and work 
well with k-means, while spectral clustering is designed to work best with non-convex sets. Particularly 
when you are doing data exploration, you don’t know a priori what the clusters look like, which is one of 
the reasons we test multiple algorithms before settling on a favorite. It will depend on the data. 
 
Let’s look more closely at what is going on behind the scenes. 
 
Construct a Similarity Matrix 

A common choice is the Gaussian (RBF) kernel: 𝑆𝑖𝑗 = 𝑒
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2
 is the Euclidean distance between points 𝑥𝑖 and 𝑥𝑗, and 𝜎 is a parameter that controls 

the width of the Gaussian kernel. 
 

# Load the iris dataset, excluding the species column 
data(iris) 
iris_data <- iris[, -5]  # Use only the numeric columns 
 
# Set a sigma value for the Gaussian kernel 



sigma <- 1 
 
# Construct the similarity matrix using Gaussian kernel 
n <- nrow(iris_data) 
similarity_matrix <- matrix(0, n, n) 
for (i in 1:n) { 
  for (j in 1:n) { 
    similarity_matrix[i, j] <- exp(-sum((iris_data[i, ] - iris_data[j, ])^2) / (2 * sigma^2)) 
  } 
} 
 
# View the similarity matrix 
head(similarity_matrix) 

 
Compute the Laplacian Matrix 
The Laplacian matrix 𝐿 is computed as: 

𝐿 = 𝐷 − 𝑆 
Where 𝐷 is the degree matrix (a diagonal matrix where each entry is the sum of the corresponding row 
in the similarity matrix 𝑆). 
 

# Compute the degree matrix 
degree_matrix <- diag(rowSums(similarity_matrix)) 
 
# Compute the Laplacian matrix 
laplacian_matrix <- degree_matrix - similarity_matrix 
 
# View the Laplacian matrix 
head(laplacian_matrix) 

 
Compute the Eigenvectors of the Laplacian 
The next step is to compute the eigenvectors and eigenvalues of the Laplacian matrix. We'll use the 
eigenvectors corresponding to the smallest non-zero eigenvalues for clustering. 
 

# Compute eigenvalues and eigenvectors 
eigen_decomp <- eigen(laplacian_matrix) 
eigenvalues <- eigen_decomp$values 
eigenvectors <- eigen_decomp$vectors 
 
# Select the eigenvectors corresponding to the smallest non-zero eigenvalues 
# Let's select the first 2 or 3 eigenvectors, depending on the clusters you want 
selected_eigenvectors <- eigenvectors[, (n-2):(n-1)]  # Selects the last 2 eigenvectors 
 
# View the selected eigenvectors 
head(selected_eigenvectors) 

 
Apply k-Means to the Embedded Data 
Finally, we use k-means clustering on the rows of the matrix formed by the selected eigenvectors to 
cluster the original data points. 



 
# Apply k-means clustering to the selected eigenvectors 
set.seed(123)  # For reproducibility 
k <- 3  # Number of clusters 
clusters <- kmeans(selected_eigenvectors, centers = k)$cluster 
 
# Compare the resulting clusters with the true species labels 
table(clusters, iris$Species) 
 
# Visualize the clusters 
plot(iris_data[, 1:2], col = clusters, pch = 19,  
     main = "Spectral Clustering on Iris Dataset") 
 
# Plot the rows of the selected eigenvectors 
plot(selected_eigenvectors, col = clusters, pch = 19, 
     main = "Clustering in the Eigenvector Space") 

 

 
 
Let’s look at some of the customizations that are possible with spectral clustering if you need to improve 
the results. 
 
1. Similarity Matrix Customizations 

• Choice of Kernel/Distance Function: While the Gaussian (RBF) kernel is common, other kernel 
functions can be used depending on the nature of the data. For example: 

o Linear Kernel: Suitable for linearly separable data. 
o Polynomial Kernel: Can capture more complex structures. 
o Cosine Similarity: Useful for text data or where angles between points are meaningful. 
o Manhattan Distance: An alternative to Euclidean distance, especially in high-dimensional 

spaces. 
 

• Parameter Tuning (e.g., 𝜎 in Gaussian Kernel): The choice of parameters like 𝜎 in the RBF kernel 
can significantly impact the performance of spectral clustering. Cross-validation or heuristic 
methods (e.g., median heuristic) are often used to tune these parameters. 
 

• k-Nearest Neighbors (k-NN) Graph: Instead of using a fully connected graph, you can build a k-
NN graph where each point is only connected to its k nearest neighbors. This can reduce 
computational cost and make the method more robust to outliers. 
 



• Sparse Graphs: In large datasets, constructing a sparse similarity matrix (e.g., using only the top 
connections) can significantly reduce memory and computational requirements. 

 
2. Choice of Laplacian Matrix 

• Unnormalized Laplacian: 𝐿 = 𝐷 − 𝑆, where 𝐷 is the degree matrix and 𝑆 is the similarity matrix. 
 

• Normalized Laplacians: 

o Symmetric Normalized Laplacian: 𝐿𝑠𝑦𝑚 = 𝐷−
1
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Laplacian to remove the influence of node degree, which can be helpful when node 
degrees vary significantly. 

o Random Walk Normalized Laplacian: 𝐿𝑟𝑤 = 𝐷−1𝐿. This variant normalizes differently 
and is interpreted as a random walk on a graph. 

 
• Choice of Eigenvectors: Instead of using just the smallest non-zero eigenvectors, you can explore 

methods like spectral gap analysis to determine the optimal number of eigenvectors to use. 
 
3. Dimensionality Reduction Techniques 

• PCA Before Spectral Clustering: Applying PCA to the data before spectral clustering can help 
reduce dimensionality and computational cost, especially in high-dimensional spaces. 
 

• Laplacian Eigenmaps: This technique involves using the eigenvectors corresponding to the 
smallest non-zero eigenvalues of the normalized Laplacian to embed data into a lower-
dimensional space before clustering. 

 
4. Clustering Algorithm 

• Different Clustering Algorithms: While k-means is the most commonly used clustering algorithm 
after the eigen-decomposition step, other clustering methods can also be applied, such as: 

o Gaussian Mixture Models (GMM): This allows for a probabilistic clustering approach. 
o Agglomerative Hierarchical Clustering: This can be used when the number of clusters is 

not known in advance. 
 

• Multiple Runs and Consensus Clustering: Running k-means multiple times with different 
initializations and using consensus clustering (e.g., majority voting across runs) can help reduce 
sensitivity to initialization. 

 
5. Handling Multi-Scale Data 

• Multi-Scale Clustering: If your data has different structures at different scales, you can apply 
spectral clustering at multiple scales (varying the kernel parameter σ\sigmaσ) and then combine 
the results. 

 
6. Post-Processing 

• Outlier Detection: Spectral clustering may be sensitive to outliers. After clustering, you can 
identify and possibly remove outliers based on their distance from cluster centroids or by 
examining their behavior in the eigenvector space. 
 



• Cluster Refinement: Sometimes, it’s beneficial to refine clusters after the initial clustering, such 
as by applying further k-means clustering within each cluster or by merging/splitting clusters 
based on additional criteria. 

 
7. Dealing with Large Datasets 

• Nyström Method: This method approximates the eigenvectors for large datasets by sampling a 
subset of the data, computing the eigenvectors on this subset, and then extending them to the 
full dataset. 
 

• Landmark Spectral Clustering: Another approach for large datasets is to use a subset of the data 
(landmarks) to approximate the Laplacian and its eigenvectors. 

 
Visualization Customizations 

• Embedding Visualization: After clustering, visualize the data in the lower-dimensional space 
spanned by the eigenvectors. This can help you understand the structure of the clusters. 
 

• Graph Visualization: Visualizing the similarity graph or the Laplacian matrix can provide insights 
into the connectivity and structure of the data. 

 
 
 
 
Resources: 

1. https://www.geeksforgeeks.org/spectral-clustering-using-r/ 
2. https://rpubs.com/gargeejagtap/SpectralClustering 
3. https://cran.r-project.org/web/packages/Spectrum/vignettes/Spectrum_vignette.pdf 
4. https://search.r-project.org/CRAN/refmans/kernlab/html/specc.html 
5. https://eranraviv.com/understanding-spectral-clustering/  
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