
Lecture 18 
 
Agglomerative Clustering 
 
Let’s start with an overview of hierarchical clustering in general, and then we’ll look at agglomerative 
clustering specifically. 
 
Hierarchical clustering is a method of cluster analysis that seeks to build a hierarchy of clusters. It is an 
unsupervised learning technique used primarily for data exploration. Unlike methods like K-means 
clustering that require you to specify the number of clusters upfront, hierarchical clustering can create a 
dendrogram, a tree-like structure, to visualize the data at various levels of granularity. 
 
How It Works 
Hierarchical clustering can be divided into two main types: 

1. Agglomerative Clustering (Bottom-Up Approach): 
o Start with Individual Points: Each data point is treated as its own cluster. 
o Merge the Closest Clusters: The algorithm iteratively merges the two closest clusters 

based on a distance metric (like Euclidean distance). 
o Continue Until One Cluster Remains: This merging process continues until all points 

belong to a single cluster, forming a hierarchical structure. 
o Output: The result can be visualized in a dendrogram, where the x-axis represents the 

data points and the y-axis represents the distance at which clusters are merged. 
 

2. Divisive Clustering (Top-Down Approach): 
o Start with All Points in One Cluster: Initially, all data points are considered to belong to a 

single cluster. 
o Recursively Split Clusters: The algorithm then iteratively splits clusters into smaller 

clusters, usually by choosing the split that minimizes within-cluster variance or 
maximizes between-cluster variance. 

o Continue Until Each Point is Its Own Cluster: This process continues until each data point 
is isolated in its own cluster. 

 
Key Concepts 

• Distance Metrics: The distance or similarity between clusters is a key element in hierarchical 
clustering. Common distance metrics include: 

o Euclidean Distance: The straight-line distance between two points. 
o Manhattan Distance: The sum of the absolute differences between coordinates. 
o Cosine Similarity: Measures the cosine of the angle between two vectors. 

• Linkage Criteria: Determines how the distance between clusters is calculated: 
o Single Linkage: Distance between the closest points of two clusters. 
o Complete Linkage: Distance between the furthest points of two clusters. 
o Average Linkage: Average distance between all pairs of points in the two clusters. 
o Centroid Linkage: Distance between the centroids (mean position of all points) of the 

clusters. 
o Ward’s Method: Aims to minimize the total variance within clusters by choosing the 

merge that results in the least increase in within-cluster variance. 
• Dendrogram: A tree-like diagram that records the sequences of merges or splits. The height at 

which two clusters are merged or split represents the distance or dissimilarity between them. 



 
Strengths and Weaknesses 
Strengths: 

• No Need to Specify the Number of Clusters: Hierarchical clustering doesn’t require pre-
specifying the number of clusters, which can be advantageous when the optimal number of 
clusters is unknown. 

• Dendrogram for Visualization: The dendrogram provides a clear visualization of the clustering 
process, which can be useful for understanding the structure of the data. 

• Flexible: Works with various types of data, including categorical, ordinal, and interval. 
 
Weaknesses: 

• Computational Complexity: Especially for large datasets, hierarchical clustering can be 
computationally intensive, as it requires calculating and storing the distance between each pair 
of points. 

• Sensitivity to Noise and Outliers: Because hierarchical clustering is based on distance 
calculations, outliers can significantly impact the results. 

• Inflexibility: Once a merge or split is done, it cannot be undone. This lack of flexibility can lead to 
suboptimal clustering solutions. 

 
Applications 
Hierarchical clustering is often used in exploratory data analysis, bioinformatics (e.g., gene expression 
data), text mining, and any field where the relationships among data points can be naturally represented 
as a hierarchy. 
 
Agglomerative clustering is the most common type of hierarchical clustering, where the algorithm starts 
by treating each data point as a separate cluster and successively merges pairs of clusters until all points 
belong to a single cluster. The way clusters are merged is governed by the linkage criteria. 
The Agglomerative Clustering Process 

1. Initialization: 
o Begin with n clusters, where n is the number of data points. Each point is its own cluster. 

2. Distance Calculation: 
o Compute the distance between every pair of clusters. This is done using a specified 

distance metric, such as Euclidean, Manhattan, or cosine distance. 
3. Merging Clusters: 

o Identify the pair of clusters with the smallest distance between them, based on the 
linkage criteria. Merge these two clusters into one. 

4. Updating the Distance Matrix: 
o After merging two clusters, update the distance matrix to reflect the distances between 

the new cluster and all other clusters. 
5. Repeat: 

o Steps 3 and 4 are repeated until only one cluster remains, forming a hierarchy of clusters 
that can be visualized in a dendrogram. 

6. Dendrogram: 
o A dendrogram is constructed to show the sequence of merges. The height of each merge 

in the dendrogram represents the distance (dissimilarity) at which the clusters were 
merged. 

Linkage Criteria 



The linkage criterion determines how the distance between two clusters is computed. Different linkage 
criteria can result in very different clustering solutions, so it’s important to understand the implications 
of each. 
 

1. Single Linkage (Minimum Linkage) 
o Definition: The distance between two clusters is defined as the minimum distance 

between any single point in the first cluster and any single point in the second cluster. 
o Formula:  

𝐷𝑠𝑖𝑛𝑔𝑙𝑒(𝐶1, 𝐶2) = min{𝑑(𝑥𝑖 , 𝑥𝑗)|𝑥𝑖 ∈ 𝐶1, 𝑥𝑗 ∈ 𝐶2} 

o Pros: 
▪ Good for finding elongated or irregularly shaped clusters. 

o Cons: 
▪ Can result in "chaining," where clusters can become long and stringy, potentially 

leading to poor cluster formation. 
 

2. Complete Linkage (Maximum Linkage) 
o Definition: The distance between two clusters is defined as the maximum distance 

between any single point in the first cluster and any single point in the second cluster. 
o Formula:  

𝐷𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒(𝐶1, 𝐶2) = max{𝑑(𝑥𝑖 , 𝑥𝑗)|𝑥𝑖 ∈  𝐶1, 𝑥𝑗 ∈ 𝐶2} 

o Pros: 
▪ Tends to create more compact, spherical clusters. 

o Cons: 
▪ Sensitive to outliers and tends to break up larger clusters. 

 
3. Average Linkage (Mean Linkage) 

o Definition: The distance between two clusters is defined as the average distance 
between all pairs of points where one point is from the first cluster and the other is from 
the second cluster. 

o Formula:  

𝐷𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝐶1, 𝐶2) =
1

|𝐶1| × |𝐶2|
∑ ∑ 𝑑(𝑥𝑖, 𝑥𝑗)

𝑥𝑗∈𝐶2𝑥𝑖∈𝐶1

 

o Pros: 
▪ Balances between single and complete linkage, reducing the likelihood of 

chaining and handling outliers better. 
o Cons: 

▪ Can still suffer from some sensitivity to outliers or non-globular clusters. 
 

4. Centroid Linkage 
o Definition: The distance between two clusters is defined as the distance between the 

centroids (geometric mean) of the two clusters. 
o Formula: 

𝐷𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑(𝐶1, 𝐶2) = 𝑑 (
1

|𝐶1|
∑ 𝑥𝑖

𝑥𝑖∈𝐶1

,
1

|𝐶2|
∑ 𝑥𝑗

𝑥𝑗∈𝐶2

) 

o Pros: 



▪ Computationally efficient and gives a natural extension of clusters by considering 
their center points. 

o Cons: 
▪ Can cause inversions in the dendrogram (where clusters may be merged at 

different levels than their centroids suggest). 
 

5. Ward's Method (Variance Minimization) 
o Definition: The distance between two clusters is the increase in variance when the two 

clusters are merged. Ward’s method seeks to minimize the total within-cluster variance. 
o Formula:  

𝐷𝑊𝑎𝑟𝑑(𝐶1, 𝐶2) = ∑ 𝑑(𝑥, 𝜇𝐶1∪𝐶2
)

𝑥∈𝐶1∪𝐶2

− ∑ 𝑑(𝑥, 𝜇𝐶1
)

𝑥∈𝐶1

− ∑ 𝑑(𝑥, 𝜇𝐶2
)

𝑥∈𝐶2

 

where 𝜇𝐶1
, 𝜇𝐶2

, and 𝜇𝐶1∪𝐶2
 are the centroids of clusters 𝐶1, 𝐶2, and their union, 

respectively. 
o Pros: 

▪ Often results in more compact and spherical clusters. 
▪ Effective in balancing the size of clusters. 

o Cons: 
▪ Computationally intensive. 
▪ Sensitive to outliers. 

6. Other Linkage Methods 
o Median Linkage: Similar to centroid linkage, but uses the median instead of the mean to 

calculate the central point of clusters. 
o Flexible Linkage: Allows a customizable blend of other linkages by adjusting a parameter 

that weights different linkage criteria. 
 
Practical Considerations 

• Choice of Linkage: The best linkage method depends on the nature of the data and the desired 
clustering outcome. For example, single linkage is good for discovering non-spherical clusters but 
can be sensitive to noise, while Ward's method is favored for creating compact, evenly-sized 
clusters. 

• Computational Complexity: Agglomerative clustering with different linkage criteria can have 
different computational costs, with some like Ward's method being more computationally 
intensive due to variance calculations. 

• Dendrogram Interpretation: The height of the merge in the dendrogram indicates the distance or 
dissimilarity at which clusters are combined. This can help in deciding the number of clusters by 
"cutting" the dendrogram at a certain height. 

 
# Step 1: Create Euclidean Distance Matrix 
euclidean_distance <- function(data) { 
  dist_matrix <- as.matrix(dist(data, method = "euclidean")) 
  return(dist_matrix) 
} 
 
# Step 2: Perform Single Linkage Agglomerative Clustering 
single_linkage_clustering <- function(dist_matrix) { 
  n <- nrow(dist_matrix) 



  clusters <- list() 
  cluster_merges <- list() 
  merge_heights <- c() 
   
  for (i in 1:n) { 
    clusters[[i]] <- i 
  } 
   
  while (length(clusters) > 1) { 
    min_dist <- Inf 
    closest_clusters <- c(NA, NA) 
    for (i in 1:(length(clusters) - 1)) { 
      for (j in (i + 1):length(clusters)) { 
        cluster_i <- clusters[[i]] 
        cluster_j <- clusters[[j]] 
        distance <- min(dist_matrix[cluster_i, cluster_j]) 
        if (distance < min_dist) { 
          min_dist <- distance 
          closest_clusters <- c(i, j) 
        } 
      } 
    } 
     
    merge_heights <- c(merge_heights, min_dist) 
    cluster_merges <- append(cluster_merges, list(closest_clusters)) 
    clusters[[closest_clusters[1]]] <- c(clusters[[closest_clusters[1]]], clusters[[closest_clusters[2]]]) 
    clusters[[closest_clusters[2]]] <- NULL 
  } 
   
  return(list(cluster_merges = cluster_merges, merge_heights = merge_heights, n = n)) 
} 
 
# Step 3: Use Iris Data and Remove Setosa 
data(iris) 
iris_data <- iris[iris$Species != "setosa", -5] 
 
# Step 4: Apply the Clustering 
dist_matrix <- euclidean_distance(iris_data) 
clustering_result <- single_linkage_clustering(dist_matrix) 
 
# Step 5: Create a Dendrogram 
plot_dendrogram <- function(clustering_result) { 
  n <- clustering_result$n 
  heights <- clustering_result$merge_heights 
  merges <- clustering_result$cluster_merges 
   
  # Initialize plot with adjusted height 
  plot(0, type = "n", xlim = c(1, n), ylim = c(0, max(heights) * 1.1),  



       xlab = "Index", ylab = "Height", main = "Dendrogram") 
   
  cluster_positions <- 1:n 
  previous_heights <- rep(0, n) 
   
  for (i in seq_along(merges)) { 
    merge <- merges[[i]] 
    left <- min(cluster_positions[merge]) 
    right <- max(cluster_positions[merge]) 
    mid <- mean(c(left, right)) 
     
    # Draw the horizontal line for the current merge height 
    segments(left, heights[i], right, heights[i]) 
     
    # Draw the vertical lines to the merge height 
    segments(left, previous_heights[left], left, heights[i]) 
    segments(right, previous_heights[right], right, heights[i]) 
     
    # Update positions and heights 
    cluster_positions[merge] <- mid 
    previous_heights[mid] <- heights[i] 
  } 
} 
 
# Step 6: Plot the Dendrogram 
plot_dendrogram(clustering_result) 

 

 



To define the number of final clusters, we’d cut the tree at some height with the desired number of 
clusters. For example, if we wanted three clusters, we could cut the tree somewhere between 0.5 and 
0.55 (we might have to experiment with the exact value). 
 
Let’s look at an example where we use Manhattan distance and average linkage. 
 

# Step 1: Create Manhattan Distance Matrix 
manhattan_distance <- function(data) { 
  dist_matrix <- as.matrix(dist(data, method = "manhattan")) 
  return(dist_matrix) 
} 
 
# Step 2: Perform Average Linkage Agglomerative Clustering 
average_linkage_clustering <- function(dist_matrix) { 
  n <- nrow(dist_matrix) 
  clusters <- list() 
  cluster_merges <- list() 
  merge_heights <- c() 
 
  for (i in 1:n) { 
    clusters[[i]] <- i 
  } 
 
  while (length(clusters) > 1) { 
    min_avg_dist <- Inf 
    closest_clusters <- c(NA, NA) 
    for (i in 1:(length(clusters) - 1)) { 
      for (j in (i + 1):length(clusters)) { 
        cluster_i <- clusters[[i]] 
        cluster_j <- clusters[[j]] 
         
        # Calculate average linkage distance 
        distance <- mean(dist_matrix[cluster_i, cluster_j]) 
         
        if (distance < min_avg_dist) { 
          min_avg_dist <- distance 
          closest_clusters <- c(i, j) 
        } 
      } 
    } 
 
    merge_heights <- c(merge_heights, min_avg_dist) 
    cluster_merges <- append(cluster_merges, list(closest_clusters)) 
    clusters[[closest_clusters[1]]] <- c(clusters[[closest_clusters[1]]], clusters[[closest_clusters[2]]]) 
    clusters[[closest_clusters[2]]] <- NULL 
  } 
 
  return(list(cluster_merges = cluster_merges, merge_heights = merge_heights, n = n)) 



} 
 
# Step 3: Use Iris Data and Remove Setosa 
data(iris) 
iris_data <- iris[iris$Species != "setosa", -5] 
 
# Step 4: Apply the Clustering 
dist_matrix <- manhattan_distance(iris_data) 
clustering_result <- average_linkage_clustering(dist_matrix) 
 
# Step 5: Create a Dendrogram 
plot_dendrogram <- function(clustering_result) { 
  n <- clustering_result$n 
  heights <- clustering_result$merge_heights 
  merges <- clustering_result$cluster_merges 
   
  # Initialize plot with adjusted height 
  plot(0, type = "n", xlim = c(1, n), ylim = c(0, max(heights) * 1.1),  
       xlab = "Index", ylab = "Height", main = "Dendrogram") 
   
  cluster_positions <- 1:n 
  previous_heights <- rep(0, n) 
   
  for (i in seq_along(merges)) { 
    merge <- merges[[i]] 
    left <- min(cluster_positions[merge]) 
    right <- max(cluster_positions[merge]) 
    mid <- mean(c(left, right)) 
     
    # Draw the horizontal line for the current merge height 
    segments(left, heights[i], right, heights[i]) 
     
    # Draw the vertical lines to the merge height 
    segments(left, previous_heights[left], left, heights[i]) 
    segments(right, previous_heights[right], right, heights[i]) 
     
    # Update positions and heights 
    cluster_positions[merge] <- mid 
    previous_heights[mid] <- heights[i] 
  } 
} 
 
# Step 6: Plot the Dendrogram 
plot_dendrogram(clustering_result) 

 



 
 
Let’s look through examples of the other linkage methods in case we want to apply those (we’ve already 
looked at other distance methods). 
 

complete_linkage <- function(cluster_i, cluster_j, dist_matrix) { 
  max_dist <- max(dist_matrix[cluster_i, cluster_j]) 
  return(max_dist) 
} 
 
centroid_linkage <- function(cluster_i, cluster_j, data) { 
  centroid_i <- colMeans(data[cluster_i, ]) 
  centroid_j <- colMeans(data[cluster_j, ]) 
  centroid_dist <- sqrt(sum((centroid_i - centroid_j)^2)) 
  return(centroid_dist) 
} 
 
wards_linkage <- function(cluster_i, cluster_j, data) { 
  combined_cluster <- rbind(data[cluster_i, , drop = FALSE], data[cluster_j, , drop = FALSE]) 
  total_within_ssq <- sum((data[cluster_i, , drop = FALSE] - colMeans(data[cluster_i, , drop = 
FALSE]))^2) + 
                      sum((data[cluster_j, , drop = FALSE] - colMeans(data[cluster_j, , drop = FALSE]))^2) 
  combined_within_ssq <- sum((combined_cluster - colMeans(combined_cluster))^2) 
  increase_in_ssq <- combined_within_ssq - total_within_ssq 
  return(increase_in_ssq) 
} 
 
median_linkage <- function(cluster_i, cluster_j, data) { 
  median_i <- apply(data[cluster_i, , drop = FALSE], 2, median) 



  median_j <- apply(data[cluster_j, , drop = FALSE], 2, median) 
  median_dist <- sqrt(sum((median_i - median_j)^2)) 
  return(median_dist) 
} 
 

The next code segment is an example of how to use these linkages in a clustering loop (compare this 
section to the full algorithm (it won’t run on its own). 
 

# Example linkage usage in clustering loop 
for (i in 1:(length(clusters) - 1)) { 
  for (j in (i + 1):length(clusters)) { 
    cluster_i <- clusters[[i]] 
    cluster_j <- clusters[[j]] 
 
    # Use the desired linkage method here 
    distance <- complete_linkage(cluster_i, cluster_j, dist_matrix)  # Replace with desired method 
 
    if (distance < min_dist) { 
      min_dist <- distance 
      closest_clusters <- c(i, j) 
    } 
  } 
} 

 
You can use this segment, just swap out the linkage method of your choice inside the main algorithm. 
 
 

 
 
 
Resources: 

1. https://www.datanovia.com/en/lessons/agglomerative-hierarchical-clustering/ 
2. https://www.geeksforgeeks.org/hierarchical-clustering/# 
3. https://builtin.com/machine-learning/agglomerative-clustering 
4. https://www.geeksforgeeks.org/agglomerative-methods-in-machine-learning/ 
5. https://www.xlstat.com/en/solutions/features/agglomerative-hierarchical-clustering-ahc  

https://www.datanovia.com/en/lessons/agglomerative-hierarchical-clustering/
https://www.geeksforgeeks.org/hierarchical-clustering/
https://builtin.com/machine-learning/agglomerative-clustering
https://www.geeksforgeeks.org/agglomerative-methods-in-machine-learning/
https://www.xlstat.com/en/solutions/features/agglomerative-hierarchical-clustering-ahc

