
Lecture 24 
 
Time Series Decomposition 
 
Time series analysis begins from some very basic tools. We want to dig into the operations of these 
functions a bit. We’re going to look at some basic time series processes such as differencing, moving 
averages, lags and autoregression, and time series decomposition methods. 
 
Time series data refers to a sequence of observations recorded at specific time intervals, typically evenly 
spaced (e.g., daily, monthly, yearly). Analyzing time series data involves understanding the underlying 
patterns, trends, and seasonality to make forecasts or gain insights. 
 
Key Concepts 

1. Stationarity: 
o A time series is stationary if its statistical properties, like mean, variance, and 

autocorrelation, are constant over time. 
o Non-stationary series often exhibit trends, seasonality, or other time-dependent 

structures. 
o Stationarity is crucial because many time series forecasting methods, such as ARIMA, 

assume stationarity. 
o Tests for Stationarity: The Augmented Dickey-Fuller (ADF) test and the KPSS test are 

commonly used to check for stationarity. 
 

2. Decomposition: 
o Time series can often be decomposed into several components: 

▪ Trend: The long-term progression in the data (e.g., upward or downward 
movement). 

▪ Seasonality: Regular, repeating patterns in the data, usually within a year (e.g., 
monthly sales peaks). 

▪ Cyclic: Similar to seasonality but not of a fixed period. Cycles can be irregular 
and longer-term. 

▪ Residual: The remaining variability in the data after removing trend and 
seasonality (essentially, the noise).  

o Additive Model: Assumes the components add up (i.e., 𝑦𝑡 = 𝑇𝑟𝑒𝑛𝑑𝑡 + 𝑆𝑒𝑎𝑠𝑜𝑛𝑎𝑙𝑖𝑡𝑦 +
𝑡 + 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑡). 

o Multiplicative Model: Assumes the components multiply (i.e., 𝑦𝑡 = 𝑇𝑟𝑒𝑛𝑑𝑡 ×
𝑆𝑒𝑎𝑠𝑜𝑛𝑎𝑙𝑖𝑡𝑦𝑡 × 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑡 ). 

o Decomposition helps in understanding the structure of the data and can assist in making 
it stationary. 

 
3. ARIMA Models: 

o ARIMA stands for AutoRegressive Integrated Moving Average. It's a popular model for 
forecasting time series data, especially when the data shows evidence of non-
stationarity. 

o Components: 
▪ AR (AutoRegressive): Models the dependency between an observation and 

some number of lagged observations (past values). 



▪ I (Integrated): Represents the differencing required to make the series 
stationary. 

▪ MA (Moving Average): Models the dependency between an observation and a 
residual error from a moving average model applied to lagged observations. 

o Parameters: 
▪ p: Number of lag observations in the model (AR part). 
▪ d: Number of times the data needs to be differenced to achieve stationarity (I 

part). 
▪ q: Size of the moving average window (MA part). 

o Seasonal ARIMA (SARIMA): An extension of ARIMA that explicitly supports univariate 
time series data with a seasonal component. 

 
Example Workflow in Time Series Analysis 

1. Exploratory Data Analysis (EDA): Plot the time series data to visually inspect for trends, 
seasonality, and other patterns. Check for stationarity using ADF or KPSS tests. 
 

2. Decomposition: Decompose the time series to identify trend, seasonal, and residual 
components. 
 

3. Transformation: If the series is not stationary, apply transformations (like differencing, log 
transformation) to achieve stationarity. 
 

4. Modeling: Use models like ARIMA for forecasting. Tune model parameters (p, d, q) based on the 
data (using techniques like AIC/BIC for model selection). 
 

5. Validation: Evaluate the model using techniques like cross-validation and check forecast accuracy 
metrics (e.g., RMSE, MAE). 
 

6. Forecasting: Use the model to make future predictions. 
 
Visualization Techniques 

• Time Series Plot: Basic plot to visualize the time series data. 
• Decomposition Plot: Shows the trend, seasonal, and residual components. 
• ACF and PACF Plots: Autocorrelation and partial autocorrelation plots help in identifying the 

order of AR and MA models. 
 
Let’s start with differencing and checking for stationarity. 
 

# Load necessary libraries 
library(ggplot2) 
library(forecast)  # For the stationarity test 
 
# Set seed for reproducibility 
set.seed(123) 
 
# Generate a simple non-stationary time series (e.g., with a trend) 
n <- 100 
time <- 1:n 



trend <- 0.5 * time 
noise <- rnorm(n, mean = 0, sd = 1) 
ts_data <- trend + noise 
 
# Convert to a time series object 
ts_data <- ts(ts_data) 
 
# Plot the original time series 
ggplot() + 
  geom_line(aes(x = time, y = ts_data), color = "blue") + 
  ggtitle("Original Time Series with Trend") + 
  xlab("Time") + 
  ylab("Value") 
 

 
# Manually calculate the first difference 
diff_ts <- numeric(length(ts_data) - 1) 
 
for (i in 2:length(ts_data)) { 
  diff_ts[i - 1] <- ts_data[i] - ts_data[i - 1] 
} 
 
# Plot the differenced time series 
ggplot() + 
  geom_line(aes(x = time[-1], y = diff_ts), color = "red") + 
  ggtitle("Differenced Time Series") + 
  xlab("Time") + 
  ylab("Differenced Value") 

 
ADF Test: 

• The ADF test checks whether a unit root is present in the series (i.e., the series is non-
stationary). 



• If the p-value is below a certain threshold (commonly 0.05), we reject the null hypothesis of a 
unit root and conclude that the series is stationary. 
###############################################  
# Augmented Dickey-Fuller Test Unit Root Test #  
###############################################  
 
Test regression drift  
 
 
Call: 
lm(formula = z.diff ~ z.lag.1 + 1 + z.diff.lag) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-3.00066 -0.61741 -0.02911  0.55117  2.96017  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)  1.06722    0.13099   8.147 1.56e-12 *** 
z.lag.1     -2.16704    0.15521 -13.962  < 2e-16 *** 
z.diff.lag   0.48155    0.09093   5.296 7.77e-07 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 1.027 on 94 degrees of freedom 
Multiple R-squared:  0.7955, Adjusted R-squared:  0.7912  
F-statistic: 182.9 on 2 and 94 DF,  p-value: < 2.2e-16 
 
 
Value of test-statistic is: -13.9616 97.536  
 
Critical values for test statistics:  
      1pct  5pct 10pct 
tau2 -3.51 -2.89 -2.58 
phi1  6.70  4.71  3.86 

 
Since the test statistic is much less than the critical value at the 5% level, we can conclude that the series 
is now stationary. If you need to perform a second differencing, if the series is not yet stationary, you 
can, just replace the differenced series where the original series was in the code. You almost never need 
to go past two differences. 
 
Let’s look at finding a moving average and plotting it on our graph. Moving average is calculated from 
averaging together nearby values, and the window moves as the graph continues. This helps to smooth 
the random errors out and give us a better view of things like trends. 
 

# Simulate or load a time series (for example, we'll use the AirPassengers dataset) 
data("AirPassengers") 
time_series <- AirPassengers 
 
# Parameters for the moving average 
window_size <- 12 # 12-month (1-year) moving average 
 
# Calculate the moving average 
moving_average <- filter(time_series, rep(1/window_size, window_size), sides = 2) 
 
# Plot the original time series 



plot(time_series, main="Original Time Series with Moving Average", col="blue", ylab="Number 
of Passengers", xlab="Time") 
 
# Add the moving average to the plot 
lines(moving_average, col="red", lwd=2) 
 
# Add a legend 
legend("topleft", legend=c("Original", "Moving Average"), col=c("blue", "red"), lwd=2) 

 
 

• filter() Function: The filter() function is used to apply a linear filter to a univariate time series. The 
rep(1/window_size, window_size) creates a vector of equal weights for the window. 

• sides=2: This option centers the moving average, using data from both sides of each point. You 
can set sides=1 for a trailing moving average. 

• plot() and lines(): The original series is plotted using plot(), and the moving average is added with 
lines(). 

 
Moving averages can also be more sophisticated than a simple average, which may be needed in 
particular contexts. An Exponential Moving Average (EMA) is a type of moving average that gives more 
weight to recent data points, making it more responsive to recent price changes compared to a simple 
moving average. The EMA is often used in time series analysis, especially in financial markets, to smooth 
data and identify trends while maintaining a focus on more recent observations. 
 
How EMA Works: 

1. Weighting: Unlike a simple moving average (SMA) which assigns equal weight to all observations 
within the window, the EMA assigns exponentially decreasing weights as the observations get 
older. The most recent data points are given the highest weight. 
 

2. Smoothing Factor (𝛼): The degree of weighting decrease is expressed as a smoothing factor, 𝛼, 
which lies between 0 and 1. The formula for 𝛼 depends on the period (window size) 𝑁 chosen 
for the EMA: 

𝛼 =
2

𝑁 + 1
 

Here, 𝑁 is the number of time periods over which the EMA is calculated. 
 

3. EMA Formula: The EMA at time 𝑡 (𝐸𝑀𝐴𝑡) can be calculated as: 
𝐸𝑀𝐴𝑡 = 𝛼𝑌𝑡 + (1 − 𝛼)𝐸𝑀𝐴𝑡−1 

Where 𝑌𝑡 is the value of the time series at time 𝑡, and 𝐸𝑀𝐴𝑡−1 is the EMA calculated for the 
previous time period. 



 
The initial EMA value, 𝐸𝑀𝐴0, is typically set to the first observation in the time series. 
 
When is EMA Used? 

• Trend Analysis: EMA is widely used in financial markets to analyze price trends and signals. 
Traders often use EMAs to generate buy and sell signals based on the crossover of different EMA 
periods (e.g., 50-day EMA crossing above 200-day EMA). 

• Responsive Indicator: EMA is more responsive to recent data than the SMA, making it a better 
choice when the analyst wants to emphasize recent changes in the data while still smoothing out 
noise. 

• Time Series Forecasting: EMA is sometimes used in time series forecasting as part of exponential 
smoothing techniques. 

 
# Load necessary package 
if(!require(TTR)) install.packages("TTR", dependencies=TRUE) 
library(TTR) 
 
# Simulate or load a time series (for example, we'll use the AirPassengers dataset) 
data("AirPassengers") 
time_series <- AirPassengers 
 
# Calculate the Exponential Moving Average 
ema <- EMA(time_series, n = 12)  # 12-month EMA 
 
# Plot the original time series 
plot(time_series, main="Original Time Series with Exponential Moving Average", col="blue", 
ylab="Number of Passengers", xlab="Time") 
 
# Add the Exponential Moving Average to the plot 
lines(ema, col="red", lwd=2) 
 
# Add a legend 
legend("topleft", legend=c("Original", "EMA"), col=c("blue", "red"), lwd=2) 

 
A lagged time series is simply a shifted version of the original time series. For example, a lag of 1 means 
that each value in the time series is shifted by one time step. 
 

# Example time series data (we'll use the AirPassengers dataset) 
data("AirPassengers") 
time_series <- AirPassengers 



 
# Function to calculate lags 
calculate_lags <- function(series, lag = 1) { 
  # Create a vector of NA values to shift the series 
  lagged_series <- c(rep(NA, lag), series[1:(length(series) - lag)]) 
  return(lagged_series) 
} 
 
# Calculate a lag of 1 for the time series 
lag_1 <- calculate_lags(time_series, lag = 1) 
 
# Display the original and lagged series 
head(cbind(time_series, lag_1), 10) 

 
A lag plot is a scatter plot of the time series against a lagged version of itself. It helps in visualizing the 
relationship between the series and its lag. 
 

# Create a lag plot (lag 1) 
plot(lag_1, time_series, main="Lag Plot (lag = 1)", xlab="Lag 1", ylab="Original Series") 
abline(lm(time_series ~ lag_1), col="red") # Adding a regression line 

 

 
Autocorrelation measures the correlation between the time series and a lagged version of itself. It can be 
calculated manually using the following steps: 
 

# Function to calculate autocorrelation for a given lag 
calculate_autocorrelation <- function(series, lag) { 
  lagged_series <- calculate_lags(series, lag) 
  # Remove NA values 
  valid_indices <- !is.na(lagged_series) 
  series <- series[valid_indices] 
  lagged_series <- lagged_series[valid_indices] 
   
  # Calculate the autocorrelation 
  n <- length(series) 
  mean_series <- mean(series) 
  mean_lagged <- mean(lagged_series) 
   



  numerator <- sum((series - mean_series) * (lagged_series - mean_lagged)) 
  denominator <- sqrt(sum((series - mean_series)^2) * sum((lagged_series - mean_lagged)^2)) 
   
  autocorrelation <- numerator / denominator 
  return(autocorrelation) 
} 
 
# Calculate autocorrelation for lag 1 
autocorrelation_1 <- calculate_autocorrelation(time_series, lag = 1) 
autocorrelation_1 
 

Autoregression (AR) is a model where the current value of the series is regressed on its past values (lags). 
 

# Function to fit a simple AR(1) model 
fit_ar_model <- function(series, lag = 1) { 
  lagged_series <- calculate_lags(series, lag) 
  valid_indices <- !is.na(lagged_series) 
   
  # Use linear regression to fit the model 
  ar_model <- lm(series[valid_indices] ~ lagged_series[valid_indices]) 
  return(ar_model) 
} 
 
# Fit an AR(1) model 
ar_model <- fit_ar_model(time_series, lag = 1) 
 
# Display the summary of the model 
summary(ar_model) 
 
# Make predictions based on the model 
predictions <- predict(ar_model) 
 
# Plot original vs predicted values 
plot(time_series, type = "l", col = "blue", main = "AR(1) Model Predictions vs Original Series") 
lines(c(NA, predictions), col = "red")  # Lag causes first prediction to be NA 
legend("topleft", legend=c("Original", "Predicted"), col=c("blue", "red"), lty=1) 

 
When we construct an ACF plot, we do this many times, calculating lags, calculating correlations, and 
then plotting the correlations. Now, let’s consider partial autocorrelations. 
 
Partial autocorrelation measures the correlation between a time series and its lagged values after 
removing the effect of the intervening lags. It's a more precise measure of correlation for each lag, 
isolating the direct relationship at that lag. 
 
The PACF can be computed using the Yule-Walker equations or by fitting AR models.  
 
Steps to Calculate PACF 



1. Calculate Autocorrelations (ACF): First, we need to calculate the autocorrelations for lags 1, 2, 
and 3. 

2. Solve the Yule-Walker Equations: 
o For PACF at lag 1, it's just the ACF at lag 1. 
o For PACF at lag 2, we adjust the ACF at lag 2 using the ACF at lag 1. 
o For PACF at lag 3, we adjust the ACF at lag 3 using the ACFs at lag 1 and 2. 

 
Yule-Walker Equations 

Given a time series {𝑋𝑡} that follows an autoregressive process of order 𝑝(𝐴𝑅(𝑝)), the Yule-Walker 

equations relate the autocorrelation function (ACF) to the parameters (coefficients) of the AR model. 
For an 𝐴𝑅(𝑝) process: 

𝑋𝑡 = 𝜙1𝑋𝑡−1 + 𝜙2𝑋𝑡−2 + ⋯ + 𝜙𝑝𝑋𝑡−𝑝 + 𝜀𝑡 

where 𝜙1, 𝜙2, … , 𝜙𝑝  are the coefficients of the AR model, and 𝜀𝑡 is white noise. 

 
Autocovariance Form 
The Yule-Walker equations can be expressed in terms of autocovariances 𝛾𝑘 of the time series. The 
autocovariance at lag 𝑘 is defined as: 
 

𝛾𝑘 = 𝐶𝑜𝑣(𝑋𝑡 , 𝑋𝑡−𝑘) 
The Yule-Walker equations for an 𝐴𝑅(𝑝) model are: 

1. For 𝑘 = 1: 
𝛾1 = 𝜙1𝛾0 + 𝜙2𝛾1 + ⋯ + 𝜙𝑝𝛾𝑝−1 

2. For 𝑘 = 2: 
𝛾2 = 𝜙1𝛾1 + 𝜙2𝛾0 + ⋯ + 𝜙𝑝𝛾𝑝−2 

… 
3. 𝑝-th equation: 

𝛾𝑝 = 𝜙1𝛾𝑝−1 + 𝜙2𝛾𝑝−2 + ⋯ + 𝜙𝑝𝛾0 

 
These equations can be written in matrix form:  

[

𝛾1

𝛾2

⋮
𝛾𝑝

] = [

𝛾0 𝛾1

𝛾1 ⋱

⋯ 𝛾𝑝−1

⋱ 𝛾𝑝−2

⋮ ⋱
𝛾𝑝−1 𝛾𝑝−2

⋱ ⋮
⋯ 𝛾0

] [

𝜙1

𝜙2

⋮
𝜙𝑝

] 

In compact notation, this can be written as: 
Γ𝑝 = ΓΦ 

Where: 
• 𝛤 is the autocovariance matrix. 
• 𝛷 is the vector of AR coefficients. 
• 𝛤𝑝 is the vector of autocovariances at lags 1 to p. 

 
Autocorrelation Form 

Alternatively, the Yule-Walker equations can be expressed in terms of autocorrelations 𝜌𝑘 =
𝛾𝑘

𝛾0
: 

𝜌𝑘 = 𝜙1𝜌𝑘−1 + 𝜙2𝜌𝑘−2 + ⋯ + 𝜙𝑝𝜌𝑘−𝑝 

 
The matrix form is similar, but with autocorrelations instead of autocovariances. 
 
PACF from Yule-Walker Equations 



The partial autocorrelation coefficient 𝜙𝑘𝑘 at lag 𝑘 can be derived as the solution of the 𝑘-th Yule-Walker 
equation: 

𝜙𝑘𝑘 =
𝛾𝑘 − ∑ 𝜙𝑘𝑖𝛾𝑘−𝑖

𝑘−1
𝑖=1

𝛾0 − ∑ 𝜙𝑘𝑖𝛾𝑖
𝑘−1
𝑖=1

 

 
This formula is recursive, where 𝜙𝑘𝑖 are the coefficients of the AR model estimated at previous lags. 
 
Each of these components, differencing, moving average and autocorrelation go into choosing the 
parameters for the ARIMA model. Recall that the number of differences is the integrated component, 
the number of significant autocorrelations goes into the moving average component, and the number of 
significant partial autocorrelations goes into the autocorrelation component of the ARIMA model. 
 
Finally, we want to look at decomposing the time series into trend, seasonal and random components. 
Before starting the decomposition, it is essential to identify whether your time series follows an additive 
or multiplicative model. 
 

• Additive Model: 
The series is decomposed as: 

𝑋𝑡 = 𝑇𝑡 + 𝑆𝑡 + 𝑅𝑡 
where 𝑋𝑡 is the observed value, 𝑇𝑡 is the trend component, 𝑆𝑡 is the seasonal component, and 𝑅𝑡 is the 
random (residual) component. 

 
• Multiplicative Model: 

The series is decomposed as: 
𝑋𝑡 = 𝑇𝑡 × 𝑆𝑡 × 𝑅𝑡 

This model is used when the variation in the seasonal component is proportional to the level of the 
trend. 
 
Calculate the Moving Average (Trend Component) 
The trend component can be estimated using a moving average. The idea is to smooth out the short-
term fluctuations to reveal the long-term trend. 
 

• Choose the window size: This typically corresponds to the length of one seasonal cycle. For 
example, if the data has a monthly seasonality, use a window size of 12. 

• Compute the moving average: For each point in the series, calculate the average of the points in 
the window centered on that point. 

 
Estimate the Seasonal Component 
Once the trend component is removed, the seasonal component can be estimated by averaging the 
deviations of the data from the trend. 
 

• Detrend the series: Subtract the trend component from the original series to obtain the 
detrended series (for the additive model). For the multiplicative model, divide the original series 
by the trend component. 

• Compute the seasonal indices: For each season (e.g., each month if monthly data), average the 
detrended values. This gives an estimate of the seasonal component for each time point in the 
season. 

 



Compute the Residual Component 
The residual component is what's left after removing the trend and seasonal components from the 
original series. 

• Calculate the residual: For the additive model, subtract the estimated trend and seasonal 
components from the original series. For the multiplicative model, divide the original series by 
the product of the trend and seasonal components. 

 
Reconstruct the Components 
To ensure the decomposition makes sense, it's often useful to visualize the original series along with the 
reconstructed series obtained by adding (or multiplying in the multiplicative case) the trend, seasonal, 
and residual components. 
 
Visualize the Results 
Plot the original series and its decomposed components (trend, seasonal, and residual) to examine the 
quality of the decomposition. 
 
Let’s look at how this works for the additive model. 
 

# Example: Resetting the Graphics Device and Resizing the Plot Panel 
dev.off()  # Reset graphics device 
windows()  # Opens a new plotting window (use quartz() on macOS, x11() on Linux) 
 
# Load the AirPassengers dataset 
data(AirPassengers) 
time_series <- AirPassengers 
 
# Step 1: Visualize the Original Series 
plot(time_series, main = "Original AirPassengers Time Series") 
 
# Step 2: Estimate Trend Component with Moving Average 
window_size <- 12  # 12 months in a year 
trend <- stats::filter(time_series, rep(1/window_size, window_size), sides=2) 
 
# Step 3: Detrend the Series to Estimate Seasonal Component 
detrended <- time_series - trend 
 
# Calculate Seasonal Indices 
seasonal <- tapply(detrended, cycle(time_series), mean, na.rm=TRUE) 
 
# Expand the seasonal component to the length of the time series 
seasonal_full <- rep(seasonal, length.out=length(time_series)) 
 
# Step 4: Calculate Residual Component 
residual <- time_series - trend - seasonal_full 
 
# Step 5: Visualize the Decomposition 
par(mfrow=c(4,1)) 
plot(time_series, main="Original Series", ylab="") 



plot(trend, main="Estimated Trend", ylab="") 
plot(seasonal_full, main="Estimated Seasonal Component", ylab="") 
plot(residual, main="Estimated Residual Component", ylab="") 

 
Notes: 

• Trend Component: The trend is estimated using a centered moving average, with a window size 
of 12 to account for annual seasonality. 

• Seasonal Component: We detrend the series by subtracting the trend, then compute seasonal 
indices by averaging the detrended values within each season (month). 

• Residual Component: The residuals are what remains after removing the trend and seasonal 
components. 

 
Interpretation: 

• The original series shows the overall pattern in the data. 



• The trend component represents the long-term upward trend in the number of air passengers. 
• The seasonal component highlights regular seasonal fluctuations in the data. 
• The residual component captures random noise or any remaining irregularities not explained by 

the trend and seasonality. 
 
Considerations for a Multiplicative Model 
For a multiplicative model, the approach is similar but involves dividing instead of subtracting when 
removing components: 

• Detrend the series: 𝑑𝑒𝑡𝑟𝑒𝑛𝑑𝑒𝑑𝑡 =
𝑋𝑡

𝑇𝑡
  

• Compute residual: 𝑅𝑡 =
𝑋𝑡

𝑇𝑡×𝑆𝑡
  

 
Built-in functions in R (e.g., decompose, stl) automate this process. 
 
Resources: 

1. https://a-little-book-of-r-for-time-series.readthedocs.io/en/latest/src/timeseries.html 
 

https://a-little-book-of-r-for-time-series.readthedocs.io/en/latest/src/timeseries.html

