
Lecture 5 
 
Regression using the normal equation 
 
Review the setup of the normal equation method for solving a simple linear regression problem in linear 
algebra. Then we’ll look at solving these and more complex problems in R. 
 
Simple Linear Regression: A Linear Algebra Approach 

Simple linear regression aims to find the best-fit line through a set of sample points by 
minimizing the sum of the squared differences between the observed values and the values 
predicted by the line. Here's how this process unfolds using linear algebra. 
 
Representation of Data Points 
Consider you have a set of n sample data points, each consisting of an input value 𝑥𝑖  and an 
output value 𝑦𝑖: 

{(𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑛, 𝑦𝑛)} 
 
The goal of simple linear regression is to find the line 𝑦 = 𝛽0 + 𝛽1𝑥 that best fits these points. 
 
System of Linear Equations 
For each data point (𝑥𝑖, 𝑦𝑖), the predicted value from the model is �̂�𝑖 = 𝛽0 + 𝛽1𝑥𝑖. The goal is to 
minimize the residuals (differences) between observed values and predicted values: 

𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 = 𝑦𝑖 − (𝛽0 + 𝛽1𝑥𝑖) 
 
In matrix form, you can represent this system of equations as: 

𝑦 = 𝑋𝛽 + 𝜖 
Where: 
𝑦 is the vector of observed values 𝑦𝑖. 
𝑋 is the design matrix that includes a column of ones (for the intercept) and the values of 𝑥𝑖: 

𝑋 = [
1 𝑥11 ⋯ 𝑥1𝑛

⋮ ⋱ ⋮
1 𝑥𝑛1 ⋯ 𝑥𝑛𝑛

] 

𝛽 = (𝛽0 𝛽1 … 𝛽𝑛) is the vector of coefficients we want to estimate. 
𝜖 is the vector of errors (residuals). 
 
Normal Equation 
To find the best-fit line, we minimize the sum of squared residuals: 

min
𝛽

∑(𝑦𝑖 − (𝛽0 + 𝛽1𝑥𝑖))
2

𝑛

𝑖=1

 

 
This can be rewritten in matrix form and solved using the normal equation: 

�̂� = (𝑋⊤𝑋)−1𝑋⊤𝑦  
 
 



Solution by Hand: Example 
Let's say we have three data points: (1,2), (2,3), and (3,5). We want to fit a line 𝑦 = 𝛽0 + 𝛽1𝑥. 
 
Design Matrix 𝑋: 

𝑋 = [
1 1
1 2
1 3

] 

 

𝑦 = [
2
3
5

] 

Normal Equation: 

�̂� = (𝑋⊤𝑋)−1𝑋⊤𝑦  
 
Let's calculate it step by step: 
 
Compute 𝑋⊤𝑋: 
 

𝑋⊤𝑋 = [
1 1 1
1 2 3

] [
1 1
1 2
1 3

] = [
3 6
6 14

]  

 
Compute 𝑋⊤𝑦: 

𝑋⊤𝑦 = [
1 1 1
1 2 3

] [
2
3
5

] = (
10
22

) 

 
Compute (𝑋𝑇𝑋)−1: 

(𝑋𝑇𝑋)−1 =
1

3 × 14 − 6 × 6
[

14 −6
−6 3

] =
1

6
[

14 −6
−6 3

] 

 

Calculate �̂�: 
 

�̂� = (𝑋𝑇𝑋)−1𝑋𝑇𝑦 =
1

6
[

14 −6
−6 3

] (
10
22

) ≈ [
4.67
4.33

] 

 

Thus, the estimated coefficients are approximately �̂�0 = 4.67 and �̂�1 = 4.33. 
 
The final regression line is: 

𝑦 = 4.67 + 4.33𝑥 
 
This is the best-fit line according to the least squares criterion, derived using linear algebra and 
the normal equation. 
 
We can apply this same strategy to more complex equations, as long as the coefficient matrix is linear 
(the variables themselves don’t need to be). 



Let’s consider the implementation of simple linear regression, multiple regression, and non-linear 
regression using the normal equation in R, with step-by-step programming examples, visualizations, and 
comparisons to built-in R functions. The session will also touch on the covariance matrix and its 
interpretation. 
 
Recall our framework: 
For a simple linear regression: 𝑦 = 𝛽0 + 𝛽1𝑥 + 𝜖 
In matrix form, 𝑦 = 𝑋𝛽 + 𝜖 

The normal equation is given by: �̂� = (𝑋⊤𝑋)−1𝑋⊤𝑦 
 
We'll predict mpg from hp in the mtcars dataset. 

# Load mtcars dataset 
data(mtcars) 
 
# Extract variables 
X <- as.matrix(cbind(1, mtcars$hp))  # Add a column of ones for the intercept 
y <- mtcars$mpg 
 
# Normal Equation: beta = (X^T * X)^(-1) * X^T * y 
beta_hat <- solve(t(X) %*% X) %*% t(X) %*% y 
 
# Print coefficients 
print("Coefficients:") 
print(beta_hat) 
 
# Plot the data and the regression line 
plot(mtcars$hp, mtcars$mpg, main = "Simple Linear Regression: mpg ~ hp", xlab = 
"Horsepower", ylab = "Miles Per Gallon") 
abline(beta_hat[1], beta_hat[2], col = "blue") 
 
model_lm <- lm(mpg ~ hp, data = mtcars) 
summary(model_lm) 

 

 
[1] "Coefficients:" 
            [,1] 
[1,] 30.09886054 
[2,] -0.06822828 

 
Call: 



lm(formula = mpg ~ hp, data = mtcars) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-5.7121 -2.1122 -0.8854  1.5819  8.2360  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept) 30.09886    1.63392  18.421  < 2e-16 *** 
hp          -0.06823    0.01012  -6.742 1.79e-07 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 3.863 on 30 degrees of freedom 
Multiple R-squared:  0.6024, Adjusted R-squared:  0.5892  
F-statistic: 45.46 on 1 and 30 DF,  p-value: 1.788e-07 

 
The lm() function has many more embedded operations than just finding the coefficients, but the 
coefficients it finds are the same, and the normal equation is how these coefficients are computed. You’ll 
note that in some model outputs, there will be a note about the number of iterations for convergence 
(such as in the logistic regression model). This is an indication that they are not using exact methods to 
find the model parameters, but are instead using an optimization algorithm as discussed in a prior 
lecture. 
 
To help understand how this method connects to the by-hand example, it may help to display/print the 
matrices along the way. It’s not necessary for the computation, but it may help to connect the dots. 
 
Let’s extend the example with multiple variables. 
 
We'll predict mpg using hp, wt, and qsec as predictors. 

# Extract variables for multiple regression 
X_multi <- as.matrix(cbind(1, mtcars$hp, mtcars$wt, mtcars$qsec)) 
y_multi <- mtcars$mpg 
 
# Normal Equation for Multiple Regression 
beta_hat_multi <- solve(t(X_multi) %*% X_multi) %*% t(X_multi) %*% y_multi 
 
# Print coefficients 
print("Coefficients for Multiple Regression:") 
print(beta_hat_multi) 
 
y_pred <- X_multi %*% beta_hat_multi 
 
plot(y_multi, y_pred, main = "Predicted vs Actual MPG", xlab = "Actual MPG", ylab = "Predicted 
MPG") 
abline(0, 1, col = "red")  # Line of perfect prediction 
 
model_lm_multi <- lm(mpg ~ hp + wt + qsec, data = mtcars) 
summary(model_lm_multi) 

 



 
[1] "Coefficients for Multiple Regression:" 
            [,1] 
[1,] 27.61052686 
[2,] -0.01782227 
[3,] -4.35879720 
[4,]  0.51083369 

 
Call: 
lm(formula = mpg ~ hp + wt + qsec, data = mtcars) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-3.8591 -1.6418 -0.4636  1.1940  5.6092  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept) 27.61053    8.41993   3.279  0.00278 **  
hp          -0.01782    0.01498  -1.190  0.24418     
wt          -4.35880    0.75270  -5.791 3.22e-06 *** 
qsec         0.51083    0.43922   1.163  0.25463     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 2.578 on 28 degrees of freedom 
Multiple R-squared:  0.8348, Adjusted R-squared:  0.8171  
F-statistic: 47.15 on 3 and 28 DF,  p-value: 4.506e-11 

 
Again, we can see that we get identical outcomes of the coefficients. 
 
When dealing with summation versions of the regression equations, we have different equations for 
single or multiple regression, or if we are using polynomial regression, and differing by the number of 
variables in the equation. But when we use the normal equation, the process is exactly the same except 
for the set-up of the design matrix X. 
 
We'll extend the simple linear regression to a polynomial (quadratic) regression. 

# Setup for quadratic regression 
X_poly <- as.matrix(cbind(1, mtcars$hp, mtcars$hp^2)) 
y_poly <- mtcars$mpg 
 
# Solve using the normal equation 
beta_hat_poly <- solve(t(X_poly) %*% X_poly) %*% t(X_poly) %*% y_poly 
 
# Print coefficients 
print("Coefficients for Polynomial Regression:") 
print(beta_hat_poly) 



 
# Plot the data and the regression curve 
plot(mtcars$hp, mtcars$mpg, main = "Polynomial Regression: mpg ~ hp + hp^2", xlab = 
"Horsepower", ylab = "Miles Per Gallon") 
curve(beta_hat_poly[1] + beta_hat_poly[2] * x + beta_hat_poly[3] * x^2, add = TRUE, col = 
"green") 
 
model_lm_poly <- lm(mpg ~ hp + I(hp^2), data = mtcars) 
summary(model_lm_poly) 

 

 
[1] "Coefficients for Polynomial Regression:" 
              [,1] 
[1,] 40.4091172029 
[2,] -0.2133082599 
[3,]  0.0004208156 

 
Call: 
lm(formula = mpg ~ hp + I(hp^2), data = mtcars) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-4.5512 -1.6027 -0.6977  1.5509  8.7213  
 
Coefficients: 
              Estimate Std. Error t value Pr(>|t|)     
(Intercept)  4.041e+01  2.741e+00  14.744 5.23e-15 *** 
hp          -2.133e-01  3.488e-02  -6.115 1.16e-06 *** 
I(hp^2)      4.208e-04  9.844e-05   4.275 0.000189 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 3.077 on 29 degrees of freedom 
Multiple R-squared:  0.7561, Adjusted R-squared:  0.7393  
F-statistic: 44.95 on 2 and 29 DF,  p-value: 1.301e-09 

 
Here, we see some differences in the output only in terms of scientific notation or standard decimal 
notation. 
 
Covariance Matrix 
Another important element we want to consider is the covariance matrix. 
 

# Covariance matrix for the coefficients in the simple linear regression 
sigma_squared <- sum((y - X %*% beta_hat)^2) / (nrow(X) - ncol(X)) 



cov_matrix <- sigma_squared * solve(t(X) %*% X) 
 
print("Covariance Matrix for Simple Linear Regression:") 
print(cov_matrix) 

 
Interpreting the Covariance Matrix: 
The diagonal elements represent the variance of each coefficient. Off-diagonal elements represent the 
covariance between coefficients. 
 
Resources: 

1. https://www.cuemath.com/algebra/covariance-matrix/ 
2. https://www.stat.cmu.edu/~larry/=stat401/lecture-13.pdf 
3. https://www.geeksforgeeks.org/covariance-matrix/#  

https://www.cuemath.com/algebra/covariance-matrix/
https://www.stat.cmu.edu/~larry/=stat401/lecture-13.pdf
https://www.geeksforgeeks.org/covariance-matrix/

