
Lecture 6 
 
Residuals and outliers 
 
The residuals of a regression model are the difference between the predicted values and the observed 
values. There are a number of ways to assess residuals to optimize our regression models. Some 
examples of regression metrics are listed below. This is not an exhaustive list. Recall the similarity of 
these metrics to variation metrics from lecture one. 
 
Regression Metrics: 

• Mean Absolute Error (MAE): The average of the absolute differences between predicted and 
actual values. 

• Mean Squared Error (MSE): The average of the squared differences between predicted and 
actual values. 

• Root Mean Squared Error (RMSE): The square root of the MSE, providing an interpretable 
measure in the same units as the target variable. 

• R-squared (R²): The proportion of the variance in the dependent variable that is predictable from 
the independent variables. 

 
These are just a few examples of commonly used metrics for evaluating machine learning models. The 
choice of metric depends on the specific problem, the type of model being evaluated, and the goals of 
the analysis. It's essential to select metrics that are relevant to the problem domain and provide insights 
into the model's performance. Additionally, it's often useful to consider multiple metrics to get a 
comprehensive understanding of a model's strengths and weaknesses. 
 
Here's how you can calculate various regression model metrics in R from predicted values and actual 
values. These are general cases. We’ll look at specific examples later. 
Bias: Bias is the difference between the predicted values and the actual values. 

# Assuming 'predicted_values' contains the predicted values and 'actual_values' contains the 
actual values  
bias <- mean(predicted_values - actual_values)  
print(paste("Bias:", bias))  

 
R-squared (R²): R-squared measures the proportion of the variance in the dependent variable that is 
predictable from the independent variables. 

# Assuming 'predicted_values' contains the predicted values and 'actual_values' contains the 
actual values  
rsquared <- cor(predicted_values, actual_values)^2  
print(paste("R-squared:", rsquared))  

 
Adjusted R-squared: Adjusted R-squared adjusts the R-squared value based on the number of predictors 
in the model. 

# Assuming 'predicted_values' contains the predicted values, 'actual_values' contains the actual 
values, and 'n' is the number of observations  
n <- length(actual_values)  
p <- ncol(predictors) # number of predictors  
adjusted_rsquared <- 1 - (1 - rsquared) * ((n - 1) / (n - p - 1))  
print(paste("Adjusted R-squared:", adjusted_rsquared))  



 
Mean Square Error (MSE): MSE is the average of the squared differences between predicted and actual 
values. 

# Assuming 'predicted_values' contains the predicted values and 'actual_values' contains the 
actual values  
mse <- mean((predicted_values - actual_values)^2)  
print(paste("Mean Square Error (MSE):", mse))  

 
Root Mean Square Error (RMSE): RMSE is the square root of MSE, providing an interpretable measure in 
the same units as the target variable. 

# Assuming 'predicted_values' contains the predicted values and 'actual_values' contains the 
actual values  
rmse <- sqrt(mse)  
print(paste("Root Mean Square Error (RMSE):", rmse))  

 
Residual Standard Error (RSE): RSE is the standard deviation of the residuals (differences between 
predicted and actual values). 

# Assuming 'predicted_values' contains the predicted values and 'actual_values' contains the 
actual values, the -2 is for simple regression since there are 2 parameters, change  the value to -k 
for k parameters in a multiple regression model 
rse <- sqrt(sum((predicted_values - actual_values)^2) / (length(actual_values) - 2))  
print(paste("Residual Standard Error (RSE):", rse))  

 
Mean Absolute Error (MAE): MAE is the average of the absolute differences between predicted and 
actual values. 

# Assuming 'predicted_values' contains the predicted values and 'actual_values' contains the 
actual values  
mae <- mean(abs(predicted_values - actual_values))  
print(paste("Mean Absolute Error (MAE):", mae))  

 
Mean Absolute Percentage Error (MAPE): MAPE measures the average relative error as a percentage of 
the actual values. 

# Assuming 'predicted_values' contains the predicted values and 'actual_values' contains the 
actual values  
mape <- mean(abs((actual_values - predicted_values) / actual_values)) * 100  
print(paste("Mean Absolute Percentage Error (MAPE):", mape))  

 
Symmetric Mean Absolute Percentage Error (SMAPE): SMAPE is a symmetric version of MAPE. 

# Assuming 'predicted_values' contains the predicted values and 'actual_values' contains the 
actual values  
smape <- mean(2 * abs(actual_values - predicted_values) / (abs(actual_values) + 
abs(predicted_values))) * 100  
print(paste("Symmetric Mean Absolute Percentage Error (SMAPE):", smape))  

 
Mean Squared Logarithmic Error (MSLE): MSLE is the average of the squared differences between the 
natural logarithms of predicted and actual values. 

# Assuming 'predicted_values' contains the predicted values and 'actual_values' contains the 
actual values  



msle <- mean((log1p(predicted_values) - log1p(actual_values))^2)  
print(paste("Mean Squared Logarithmic Error (MSLE):", msle))  

 
Root Mean Squared Logarithmic Error (RMSLE): RMSLE is the square root of MSLE. 

# Assuming 'predicted_values' contains the predicted values and 'actual_values' contains the 
actual values  
rmsle <- sqrt(msle)  
print(paste("Root Mean Squared Logarithmic Error (RMSLE):", rmsle))  

 
Akaike Information Criterion (AIC): AIC measures the quality of a model relative to other models. 

# Assuming 'predicted_values' contains the predicted values, 'actual_values' contains the actual 
values, and 'k' is the number of parameters in the model  
k <- 1 # Example: number of parameters  
aic <- length(actual_values) * log(mse) + 2 * k  
print(paste("Akaike Information Criterion (AIC):", aic))  

 
Bayesian Information Criterion (BIC): BIC is similar to AIC but penalizes models with more parameters 
more heavily. 

# Assuming 'predicted_values' contains the predicted values, 'actual_values' contains the actual 
values, and 'k' is the number of parameters in the model  
bic <- length(actual_values) * log(mse) + k * log(length(actual_values))  
print(paste("Bayesian Information Criterion (BIC):", bic))  

 
Mallow's Cp is a metric used to compare the performance of regression models, particularly in the 
context of model selection. It is used to assess the goodness-of-fit of a model while penalizing for the 
number of predictors included in the model. Lower values of Cp indicate better model fit. 
To calculate Mallow's Cp for a LOESS (locally estimated scatterplot smoothing) regression model by hand 
in R, you typically need to follow these steps: 

• Fit the LOESS regression model. 

• Obtain the predicted values from the LOESS model. 

• Calculate the residual sum of squares (RSS) of the model. 

• Calculate the degrees of freedom of the model. 

• Calculate Mallow's Cp using the formula: 
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where: 
𝑛 is the number of observations. 
𝑝 is the number of predictors in the model. 
𝜎2 is the estimated error variance. 
 
Here's how you can implement this in R: 

# Fit the LOESS regression model  
loess_model <- loess(y ~ x, data = your_data)  
# Obtain predicted values  
predicted_values <- predict(loess_model)  
# Calculate residual sum of squares (RSS)  
RSS <- sum((your_data$y - predicted_values)^2)  
# Calculate degrees of freedom  



df <- length(your_data$y) - length(loess_model$coefficients)  
# Calculate error variance  
sigma_sq <- RSS / df  
# Calculate Mallow's Cp  
Cp <- (1/length(your_data$y)) * (RSS / sigma_sq) + (2 * length(loess_model$coefficients) - 
length(your_data$y))  
print(paste("Mallow's Cp:", Cp))  

 
In this code: 

• your_data represents your dataset with variables x and y. 

• loess() is used to fit the LOESS regression model. 

• predict() is used to obtain the predicted values. 

• Residual sum of squares (RSS) is calculated. 

• Degrees of freedom (df) are calculated as the difference between the number of observations 
and the number of coefficients in the model. 

• Error variance (𝜎2) is estimated as RSS divided by df. 
 
Mallow's Cp is calculated using the provided formula. Make sure to replace your_data, x, and y with your 
actual data and variable names. Additionally, ensure that the LOESS model is appropriate for your data 
and research question. 
 
These metrics have different strengths and weaknesses, but not all regression models are set up in the 
same way, so it may not be possible to rely on built-in functions for these metrics in order to compare 
regression models built with different function types. We may also want to optimize a model using 
metrics other than standard residual square errors. 
 
Let’s look at some specific examples from the mtcars dataset using a variety of regression models to 
calculate their residuals, and then calculate a sample of metrics.  The example metrics focus on the 
simple linear model, but the code can be updated to look at other model residuals as well. 
 

# Load the mtcars dataset 
data(mtcars) 
 
# Simple Linear Regression: mpg ~ hp 
model_lm <- lm(mpg ~ hp, data = mtcars) 
 
# Multiple Linear Regression: mpg ~ hp + wt + qsec 
model_lm_multi <- lm(mpg ~ hp + wt + qsec, data = mtcars) 
 
# Generalized Linear Model: mpg ~ hp + wt + qsec (using Gaussian family) 
model_glm <- glm(mpg ~ hp + wt + qsec, family = gaussian, data = mtcars) 
 
# LOESS (Locally Estimated Scatterplot Smoothing): mpg ~ hp 
model_loess <- loess(mpg ~ hp, data = mtcars) 
 
# Penalized Regression: Ridge Regression (L2) (using glmnet package) 
# install.packages("glmnet") 



library(glmnet) 
x <- as.matrix(mtcars[, c("hp", "wt", "qsec")]) 
y <- mtcars$mpg 
model_ridge <- glmnet(x, y, alpha = 0, lambda = 0.1) # Alpha=0 for Ridge, lambda controls 
regularization 
 
# Spline Regression: mpg ~ hp (using splines) 
library(splines) 
model_spline <- lm(mpg ~ ns(hp, df = 4), data = mtcars) 
 
# Gaussian Process Regression (using kernlab package) 
# install.packages("kernlab") 
library(kernlab) 
model_gp <- gausspr(mpg ~ hp + wt + qsec, data = mtcars, kernel = "rbfdot") 
 
# Get predicted values from the model 
predicted_lm <- predict(model_lm) 
predicted_multi <- predict(model_lm_multi) 
 
# Calculate residuals by hand: Residual = Observed - Predicted 
residuals_lm <- mtcars$mpg - predicted_lm 
residuals_multi <- mtcars$mpg - predicted_multi 
 
# Calculate Residual Sum of Squares (RSS) 
RSS_lm <- sum(residuals_lm^2) 
 
# Calculate Total Sum of Squares (TSS) 
TSS <- sum((mtcars$mpg - mean(mtcars$mpg))^2) 
 
# Calculate R-squared 
R_squared_lm <- 1 - RSS_lm / TSS 
R_squared_lm 
 
# Number of observations 
n <- length(mtcars$mpg) 
 
# Calculate RMSE 
RMSE_lm <- sqrt(RSS_lm / n) 
RMSE_lm 
 
# Calculate MAPE 
MAPE_lm <- mean(abs((mtcars$mpg - predicted_lm) / mtcars$mpg)) * 100 
MAPE_lm 
 
# Number of predictors in the model 
p_lm <- length(coefficients(model_lm)) 
 
# Calculate AIC 



AIC_lm <- n * log(RSS_lm / n) + 2 * p_lm 
AIC_lm 
 
# Calculate BIC 
BIC_lm <- n * log(RSS_lm / n) + p_lm * log(n) 
BIC_lm 
 
# Calculate error variance (sigma^2) from the full model (multiple regression) 
sigma2_full <- sum(residuals_multi^2) / (n - p_lm) 
 
# Calculate Mallow's Cp 
Cp <- RSS_lm / sigma2_full + 2 * p_lm - n 
Cp 
 
# R-squared 
summary(model_lm)$r.squared 
 
# RMSE 
sqrt(mean(residuals_lm^2)) 
 
# MAPE (not built-in, but you can verify) 
mean(abs((mtcars$mpg - predicted_lm) / mtcars$mpg)) * 100 
 
# AIC 
AIC(model_lm) 
 
# BIC 
BIC(model_lm) 

 
As noted, some of these metrics have built-in functions that are designed to work with models that 
produce output structured similarly to the lm() function output. However, if the model output is not 
structured that way, the built-in function will not work. And some metrics don’t have built-in functions 
for them at all. Because we can build the residuals from the predict() function also means that if we have 
an equation for the model (for parametric models), we can also calculate residuals and all these metrics 
from the equation. 
 
Outlier Identification and Removal 
Identifying outliers in residuals is an essential part of regression diagnostics. Outliers can have a 
significant impact on the model's fit and the interpretation of results. Below are examples of how you 
can identify outliers in residuals using both graphical and statistical methods, as well as hypothesis tests, 
with R code examples. 
 

# Load the dataset 
data(mtcars) 
 
# Fit a simple linear regression model 
model <- lm(mpg ~ wt + hp, data = mtcars) 
 



# Calculate residuals 
residuals <- resid(model) 
 
# Plot Residuals vs Fitted Values 
plot(fitted(model), residuals, 
     main = "Residuals vs Fitted Values", 
     xlab = "Fitted Values", 
     ylab = "Residuals") 
abline(h = 0, col = "red") 
 

 
# QQ Plot of Residuals 
qqnorm(residuals, main = "QQ Plot of Residuals") 
qqline(residuals, col = "red") 

 
# Calculate Cook's Distance 
cooks_distance <- cooks.distance(model) 
 
# Plot Cook's Distance 
plot(cooks_distance, type = "h", main = "Cook's Distance", 
     ylab = "Cook's Distance") 
abline(h = 4 / nrow(mtcars), col = "red") # Common threshold line 

 



# Calculate Leverage (Hat Values) 
leverage <- hatvalues(model) 
 
# Plot Leverage 
plot(leverage, type = "h", main = "Leverage (Hat Values)", 
     ylab = "Leverage") 
abline(h = 2 * mean(leverage), col = "red") # Common threshold 

 
# Calculate Standardized Residuals 
standardized_residuals <- rstandard(model) 
 
# Calculate Studentized Residuals 
studentized_residuals <- rstudent(model) 
 
# Plot Standardized Residuals 
plot(standardized_residuals, type = "h", main = "Standardized Residuals", 
     ylab = "Standardized Residuals") 
abline(h = c(-2, 2), col = "red") # Common threshold lines 

 
# Plot Studentized Residuals 
plot(studentized_residuals, type = "h", main = "Studentized Residuals", 
     ylab = "Studentized Residuals") 
abline(h = c(-2, 2), col = "red") # Common threshold lines 

 
 



# Load the car package 
library(car) 
 
# Perform the Bonferroni Outlier Test 
outlier_test <- outlierTest(model) 
 
# Display results 
print(outlier_test) 
 
# Perform Shapiro-Wilk Test for Normality 
shapiro_test <- shapiro.test(residuals) 
 
# Display results 
print(shapiro_test) 

 
While identifying outliers is critical, handling them requires careful consideration. Simply removing 
outliers without understanding the cause can lead to biased results. Instead, outliers should be 
investigated to understand why they exist and whether they should be addressed or if they offer 
valuable information about the data. 
 
Another test you can use is the Rosner Test. 
 

# Install the EnvStats package if you haven't already 
install.packages("EnvStats") 
 
# Load the package 
library(EnvStats) 
 
# Example data 
data <- c(10.1, 10.5, 10.2, 10.6, 10.8, 11.2, 10.4, 10.7, 11.4, 15.2, 16.8, 17.3) 
 
# Perform Rosner's test 
# The `k` parameter specifies the maximum number of potential outliers to test for. 
rosner_test_result <- rosnerTest(data, k = 3) 
 
# Display the results 
print(rosner_test_result) 

 
Sample Output: 
Rosner Test for Outliers 
 
Data: data 
 
Number of Observations: 12 
Maximum Number of Outliers (k): 3 
Number of Outliers Detected: 2 
 
  Obs.  Value   R      p-value  Outlier? 



  11   16.8   13.44   < 0.05    Yes 
  12   17.3   13.99   < 0.05    Yes 
  10   15.2    9.87    0.07     No 
 

# Perform Rosner's test on the 'mpg' column of the mtcars dataset 
rosner_test_mtcars <- rosnerTest(mtcars$mpg, k = 3) 
 
# Display the results 
print(rosner_test_mtcars) 

 
Results of Outlier Test 
------------------------- 
 
Test Method:                     Rosner's Test for Outliers 
 
Hypothesized Distribution:       Normal 
 
Data:                            mtcars$mpg 
 
Sample Size:                     32 
 
Test Statistics:                 R.1 = 2.291272 
                                 R.2 = 2.291827 
                                 R.3 = 2.182345 
 
Test Statistic Parameter:        k = 3 
 
Alternative Hypothesis:          Up to 3 observations are not 
                                 from the same Distribution. 
 
Type I Error:                    5% 
 
Number of Outliers Detected:     0 
 
  i   Mean.i     SD.i Value Obs.Num    R.i+1 lambda.i+1 Outlier 
1 0 20.09062 6.026948  33.9      20 2.291272   2.938048   FALSE 
2 1 19.64516 5.565359  32.4      18 2.291827   2.923571   FALSE 
3 2 19.22000 5.122930  30.4      19 2.182345   2.908473   FALSE 

 
The Rosner test is a robust method to identify multiple outliers in a dataset, especially when you suspect 
there are more than one. This method is particularly valuable in quality control and environmental data 
analysis, where outliers might indicate significant deviations or anomalies. It also conveniently identifies 
the observation number in the output so that the values can be removed.  For example, since 
observation 20 is the most extreme value, I could remove it like this: 
 

# Load the mtcars dataset 
data(mtcars) 
 
# Remove row 20 
mtcars <- mtcars[-20, ] 
 
# Display the modified dataset to verify 
print(mtcars) 

 



If you have several values to remove, you can remove them with a filter if they meet a particular 
condition. 
 

# Example: Remove rows where mpg is less than 15 
mtcars <- mtcars[mtcars$mpg >= 15, ] 
 
# Display the modified dataset 
print(mtcars) 

 
Boxplots can also be used to identify specific observations as outliers. 
 

# Load the mtcars dataset 
data(mtcars) 
 
# Create a boxplot for the mpg variable 
boxplot(mtcars$mpg, 
        main = "Boxplot of Miles Per Gallon (mpg)", 
        ylab = "Miles Per Gallon", 
        col = "lightblue") 
 

 
# Create a boxplot with labels for outliers 
boxplot(mtcars$mpg, 
        main = "Boxplot of Miles Per Gallon (mpg)", 
        ylab = "Miles Per Gallon", 
        col = "lightblue", 
        outline = TRUE) 
 
# Identify and label the outliers 
outliers <- boxplot.stats(mtcars$mpg)$out 
outlier_indices <- which(mtcars$mpg %in% outliers) 
 
# Add text labels for outliers 
text(x = rep(1, length(outliers)), y = outliers,  
     labels = rownames(mtcars)[outlier_indices],  
     pos = 4, cex = 0.8, col = "red") 
 
# Extract outliers using boxplot.stats 
outliers <- boxplot.stats(mtcars$mpg)$out 
print(outliers) 

 



If you run these examples, mpg has no outliers, but if you update the code to test the model residuals 
from the prior example, you can print which vehicles are producing the outliers in that model as shown 
below. 
 
Chrysler Imperial          Fiat 128    Toyota Corolla  
         5.507513          5.800972          5.853791 

 
Keep in mind that outliers are to be expected when you have a lot of data. Small datasets are the most 
sensitive to outliers, but larger datasets, just by chance, will have some. If you do choose to remove the 
outliers, rerun all models and statistics and be prepared to justify the removal.  For largish datasets, the 
default should be to identify them but not necessarily remove them unless they have a significant impact 
on the model. 
 
 
Resources: 

1. https://stattrek.com/regression/residual-analysis 
2. https://online.stat.psu.edu/stat462/node/172/ 
3. https://cran.r-project.org/web/packages/metrica/vignettes/available_metrics_regression.html 

 

https://stattrek.com/regression/residual-analysis
https://online.stat.psu.edu/stat462/node/172/
https://cran.r-project.org/web/packages/metrica/vignettes/available_metrics_regression.html

