10/29/2024

Logarithmic Functions

Last time, we discussed exponential functions. We said that the domain of $f(x) = a^x$, a > 0, $a \neq 1$ is going to be $(-\infty, \infty)$ i.e. all real numbers, and the range $(0, \infty)$.

Logarithms are the inverse of exponential functions and so the domain of $g(x) = \log_a x$, a > 0, $a \neq 1$ is $(0, \infty)$ and the range is $(-\infty, \infty)$.

Because they are inverses of each other $\log_a(a^x) = x$, $\log_3(3^4) = 4$. Similarly, $a^{\log_a x} = x$, e.g. $10^{\log 5} = 5$, $e^{\ln 26} = 26$

$$log_{3} 10 = x$$

 $3^{x} = 10$
 $x \approx 2.0959$
 $3^{2.0959} \approx 9.999964 ...$

On an exponential function $f(x) = a^x$, we have the points (0,1), (1,a), $\left(-1,\frac{1}{a}\right)$. On any log function we will have $g(x) = \log_a(x)$, will have the points (1,0), (a, 1), $\left(\frac{1}{a}, -1\right)$

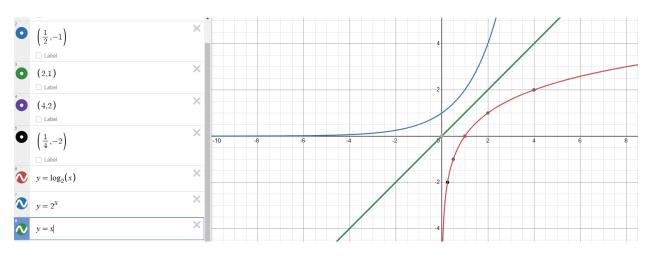
$$\log_a(1) = 0$$

$$\log_a(a) = 1$$

$$\log_a\left(\frac{1}{a}\right) = \log_a(a^{-1}) = -1$$

Plot the graph of $g(x) = \log_2(x)$

Key points:
$$(1,0), (2,1), (\frac{1}{2}, -1)$$

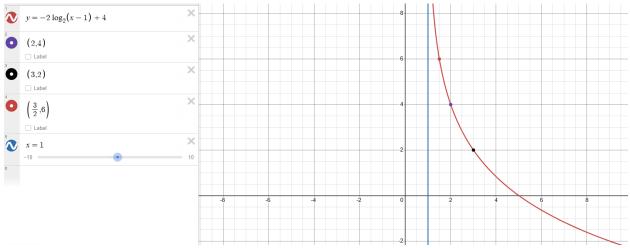


Applying transformations to the key points

$$h(x) = -2\log_2(x-1) + 4$$

Horizontal shift right by 1 Vertical reflection (negative sign out front) Vertical stretch by factor of 2 Vertical shift up by 4

Keypoints from $\log_2(x)$	(1,0)	(2,1)	$\left(\frac{1}{2},-1\right)$
Horizontal shift right 1	(2,0)	(3,1)	$\left(\frac{3}{2}, -1\right)$
Vertical reflection	(2,0)	(3,-1)	$\left(\frac{3}{2},1\right)$
Vertical stretch by 2	(2,0)	(3,-2)	$\left(\frac{3}{2},2\right)$
Vertical shift up 4	(2,4)	(3,2)	$\left(\frac{3}{2},6\right)$



The domain is now $(1, \infty)$ because of the rightward shift by 1,

 $(0,\infty) + 1 \to (1,\infty)$

Domain of the log is x > 0

$$f(x) = \log(g(x))$$

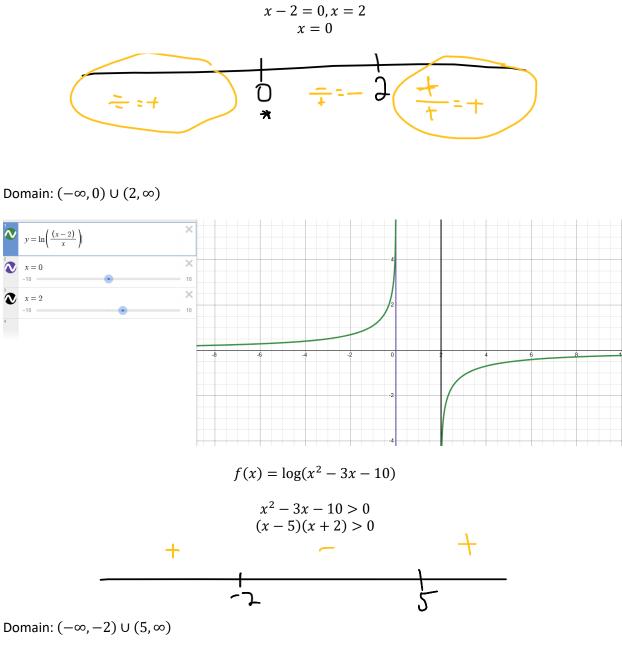
domain: $g(x) > 0$

$$f(x) = \ln\left(\frac{x-2}{x}\right)$$

What is the domain of this function?

$$\frac{x-2}{x} > 0$$

Set both the denominator and the numerator equal to 0, these are the places where the sign changes, and then we build a sign chart.



Change of base formulas

$$\log_a b = \frac{\ln b}{\ln a} = \frac{\log b}{\log a}$$
$$\log_3 10 = \frac{\ln(10)}{\ln(3)} \approx 2.095903274 \dots$$

$$f(x) = \log_2(x) = \frac{\ln(x)}{\ln(2)}$$

Occasionally, you'll encounter problems with the variable in the base of the log.... $\log_x(4) = 3$

Convert this into an "exponential" version of this expression:

$$x^3 = 4$$
$$x = \sqrt[3]{4}$$

Next time, we'll talk about properties of logs (and exponentials)