
 1 Betsy McCall 

Transformations 
 
Transformations begins with the idea that all graphs of a basic form have the same general shape, and 
we can transform a standard graph into a more specific graph with certain properties by altering the 
graph in predictable ways.  There are six ways that we can transform a graph: 

i. Horizontal Stretch/Compression 
ii. Horizontal Reflection 
iii. Horizontal Shift 
iv. Vertical Stretch/Compression 
v. Vertical Reflection 
vi. Vertical Shift 

 
In general, we will wish to perform the actions in this order, performing all horizontal changes first, then 
all vertical ones, to avoid interaction of the parts in unfortunate ways.  [However, since 
stretches/compressions and reflections, can be done in either order as both will involve multiplication.]  
In practice, with most of the functions we will be working with, we can achieve a horizontal 
stretch/compression by doing the opposite vertical stretch/compression, and this will sometimes be 
true of reflections as well.  This is not always the case, as we will see when dealing with Trigonometric 
functions, so we will treat each one separately, even if we do de-emphasize these cases for now. 
 
To begin any discussion of transformation, we need a basic inventory of functions (or equations).  We 
will consider the following: parabola, reciprocal function, square root function, the circle (not a 
function), and the sine function.  These graphs are shown in order below.  Our process will work for 
other graphs as well, and you will be allowed to experiment on these in the problem section. 
 
While it is a bit “out of order” it is 
traditional to start with the horizontal and 
vertical shifts. 
 
If we are not obliged to maintain function 
notation, there is actually a great deal that 
is similar about how vertical and 
horizontal shifts are obtained, and we can 
see this most easily in a non-function, the 

circle. 
 
 
 
 
 
 
 
 
 
 

The equation of the circle, centered at the origin, is 2 2 2x y r+ = .  The graph above has r=4 for 

illustration.  In the equation of the circle, if we want to shift it so that the center is now at (3,0), i.e. a 
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shift of positive three in the x-direction, 
our equation becomes: 

2 2 2( 3)x y r− + = .  We subtract the 

amount (and direction) of the shift from 
the x-variable.  This creates a horizontal 
shift.  Compare the two graphs.   
Likewise, if I wanted to  shift the graph 
into the y-direction, I would subtract the 
desired amount from the y variable.  So, 
supposed I wanted to shift the circle from 
the orgin down to have the center at (0,-
4), a vertical shift of 4 down, I would 
subtract -4 from y in the equation or 

( 4) 4y y− − = +  giving us 
2 2 2( 4)x y r+ + = , as shown to the left.  

And of course, I can apply both shifts 
simultaneously, if I want the center not at 
(0,0), but at (3,-4).  My equation then is 

2 2 2( 3) ( 4)x y r− + + = , and the graph is 

shown to the left.  We saw this in the 
section on circles. 
 

We can think of the process similarly for functions.  Consider the equation 2y x= , our basic parabola.  

[Recall, that because this is a function, we will eventually want to isolate y so that we can write it as 
2( )f x x= .]  If we want to shift the graph horizontally 2 units left (i.e. by 

-2), we subtract this from the x-variable, and we do it inside any other 

operations in the equation.  This gives us: 2( 2)y x= +  since 

( 2) 2x x− − = + .  Compare with the original graph. If we wish to shift 

the graph vertically, we will subtract from the y-variable.  Let’s say we 

want to shift it up by 1.  Our equation would become 21y x− = .  Which 

is a fine equation, but not good function notation, so if we solve for y, we 

get 2 1y x= +  or 2( ) 1g x x= + . 

 
Notice that once we solve for y, we get the form that our textbook 



 3 Betsy McCall 

introduces vertical shifts using.  Horizontal shifts you subtract, vertical shifts you add… but this overlooks 
the similarity in the two processes.   Unfortunately, we do have to use these ideas when we talk about 
shifts using function notation. 
 
In function notation, everything that 
applies horizontally is done “inside” the 
function notation, and everything that is 
vertical is applied “outside” the function 
notation.  So to represent the horizontal 

shift of a function ( )h x  to the right by 5, 

we write ( 5)h x − , which tells us to 

replace x everywhere in our equation with 

x-5.  Thus, 
1

( 5)
5

h x
x

− =
−

.  If we 

wanted to do a vertical shift of positive 3, we would write ( ) 3h x + , or 

1
( ) 3 3h x

x
+ = + .  Originally, without function notation, recall that this 

would have been 
1

3y
x

− = , and we then added three to both sides to 

get the new function 
1

3y
x

= + . 

To apply shifts to a series of points, apply the horizontal shift to the x-
coordinates, and the vertical shift to the y-coordinates of each point.  
When applying transformations directly to points, apply each 

transformation directly, i.e. if you want to move right, add, even in the x-direction. 
 
We will see this relationship again between horizontal and vertical transformations: when employing 
function notation, horizontal shifts will appear in the equation doing the “opposite”, and vertical 
transformations will do straightforwardly what we expect them to do.  As we’ve seen though, this is a 
direct result of all transformations really doing the “opposite” all the time in non-functions, and then our 
solving again for y, which reverses the effect. 
 
To see horizontal reflections, we will have 
to work with equations that are not 
symmetric.  The best one for this is 

y x=  (on the right) since it has no 

symmetry whatsoever. To apply a 
horizontal reflection, we are going to 
apply a negative to the x-variable in the 
equation (inside any operations).  The 
horizontal reflection will reflect the graph 
across the y-axis.  Thus, the square root 
graph, reflected across the y-axis is 

y x= −  (on the left).  This graph is 

perfectly well defined when the x-values 
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being put into the equation are already negative: the additional negative will make them all positive.  

We can see something similar happening in the graph of 
1

y
x

=  (on the right) compared to the graph of 

1

( )
y

x
=

−
 (on the left).   It should be noted here that graphs that are y-symmetric cannot be reflected 

horizontally because the graph before and the graph after looks the same. 
 
Vertical reflections are done similarly, but 
with the negative on the outside of the 
equation.  (In truth, the negative is being 
applied to the y-variable, and them 
“moved” to the other side to isolate y 
again.)  We return to the square root 
graph to see the reflection in action.   The 
original function is on the right, and 

y x= −  is on the right.  A parabola has 

a null horizontal reflection, but it can do a 

vertical reflection:  2y x= − . A curious 

thing is that graphs that are origin 

symmetric, like the graph of 
1

y
x

= . This 

is to be expected, because if we simplify 
the equation with the horizontal 

reflection 
1

( )
y

x
=

−
, we get 

1
y

x
= − , 

which is the same as the vertical reflection.  Go back to the last page and you can see the vertical 
reflection on the reciprocal graph.  

 
For a graph like the square root graph, you can apply both 
transformations simultaneously, and get a completely unique graph.  

y x= − −  does not simplify as the negative cannot pass through the 

radical, producing the graph shown here.  
 
To describe these tranformations in function notation, the horizontal 

reflection is ( )f x− , and the vertical reflection is ( )f x− . 

 
To apply these transformation to a series of points, apply the horizontal 

reflection by changing the sign on the x-coordinate, apply the vertical reflection by changing the sign on 
the y-coordinate. 
 
Reflections are achieved by essentially multiplying by a negative one.  If be multiply by some other value 
we get stretching or compressing effects, depending whether the multiplier is on the interval (0,1) or on 
(1,∞).   
 



 5 Betsy McCall 

Horizontal stretching and compressing, 
like with horizontal shift, is applied 
“inside” the function, replacing x with ax, 
where a is the multiplier.  If we wish to 
compress the graph in the horizontal 
direction, a should be on the interval 
(1,∞), i.e. bigger than 1.   If we wish to 
stretch the graph horizontally, a should 
be on the interval (0,1), i.e. less than 1.  
For example: to stretch the parabola 
horizontally by a factor of two, we are 

going to multiply by 
1

2
, inside any operations of the function: 

2
1

2
y x

 
=  
 

.  To compress the graph by a factor of 3, replace x with 3x: 

2(3 )y x= . 

 
Vertical stretching and compressing works more the way you would 
expect.  If you wish to stretch the graph vertically (make it bigger in y), 

you would multiply by a number bigger than 1.  If you wanted to vertically compress the graph (make it 
smaller in y) you would multiply by a number less than 1.  Notice that for functions like the parabola, if 

we simplify the first equation we get 21

4
y x= , so that stretching the graph here vertically by 2, is the 

same as compressing it vertically by 
1

4
.  Similarly with the horizontal compression, it simplifies to 

29y x= , so this is the same as a vertical stretch by a factor of 9.  And we can see that in the graphs. 

 
In many of our functions, as was stated at the top, vertical stretching/compressing have a similar effect 

to horizontal stretching/compressing.  
From looking at the graph, they can’t 
really be differentiated.  However, we 

can see with the graph of sin( )y x= , 

that they can have different effects with 
the right function.  Compare the original 

graph with sin(2 )y x=  (top right) and 

4sin( )y x=  (bottom left).  Notice that 

the sine graph has a number of zeros that 

repeat over and over.  The horizontal compression (2) makes the zeros 
appear closer together (it reduces the interval by a factor of 2), but it 
does not stretch the graph vertically at all (the maximum/minimum is 
still ±1).  Whereas the vertical stretch (4) increases the height of the 
maximum/minimum (to ±4), but does not move the zeros either left or 
right.  You will study the properties of this function when you do the 
trigonometry section of precalculus. 
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To express a horizontal stretch or compression in function notation, we write ( )f ax , and a vertical 

stretch as ( )af x . 

 
To apply a stretch/compression the a series of points, apply the horizontal stretch/compress to the x-
coordinate only; to apply a vertical stretch/compression to the y-coordinate only. 
Examples. 

a. Apply the following tranformations to the graph of 
1

( )f x
x

= : i) 

shift left by 1, ii) reflect vertically, iii) shift up by 6.  Sketch the 

graph.  In function notation, we can write this as ( 1) 6f x− + + , 

and so our transformed graph is 
1

( ) 6
1

g x
x

= − +
+

. 

b. Apply the following transformations to the graph of 

( ) sin( )f x x= : i) horizontal stretch by 2, ii) horizontal shift right 

by 1, iii) vertical reflection, iv) vertical shift by 3.  Sketch the 
graph.  We will let our calculator sketch the graph, but we need to come up with the equation.  

Remember that all horizontal changes are “opposite”, so our horizontal stretch is a 
1

2
 multiplier 

inside the function, and a horizontal shift right of 1 means 

subtract 1.  The horizontal shifts alone give us 
1

( 1)
2

f x
 

− 
 

, 

and then applying the vertical changes outside the function, we 

apply first the reflection, and then the shift: 
1

( 1) 3
2

f x
 

− − + 
 

.  

Applying this to the sine function gives us 

1
( ) sin ( 1) 3

2
g x x

 
= − − + 

 
. 

c. List the transformations applied to the function ( ) 2 4 1f x x= − − + + . Compare your list to 

the graph.  To be certain to find the correct transformations, we have to write the function with 
the transformations isolated, particularly under the square root.  
Here, we want to factor out any coefficients of x: 

( ) 2 ( 4) 1f x x= − − − + .  We have i) a vertical shift up of 1 (+1 

outside the root), ii) a vertical stretch of 2 (2 outside the root), 
iii) a vertical reflection (negative outside the root), iv) a 
horizontal reflection (negative under the root), and v) a 
horizontal shift of 4 to the right (-4 under the root).  

d. Consider the points (3,2), (1,1), and (-1, 4).  Apply the 
following transformations to these points: i) horizontal 
reflection, ii) horizontal shift left by 2, iii) vertical stretch by 4, 

and vertical shift down 3.  Under horizontal reflection, our three points become (-3,2), (-1,1), 
and (1,4).  The horizontal shift left by 2 makes them (-5,2), (-3,1), and (-1,4).  Notice that both 
threse transformations only changed the x-coordinate.  Now we tackle the y-coordinate.  A 
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vertical stretch by 4 means multiply by 4, giving us (-5,8), (-3,4), and (-1,16).  And the vertical 
shift down by 3 gives us, finally, (-5,5), (-3,1), and (-1,13). 

 
Problems. 

i. Shift the graph 3( )f x x=  left by 4.  Sketch the original graph and the transformed graph. 

ii. Shift the graph 
1

( )f x
x

=  down by 2, and reflect horizontally.  Sketch the original graph and 

the transformed graph.  Give the new equation. 

iii. Shift the graph ( )f x x=  right by 3, stretch vertically by 5, and reflect vertically.  Sketch the 

original graph and the transformed graph.  Give the new equation. 

iv. Shift the graph ( )f x x= vertically up by 6, horizontally left by 4, reflect horizontally, 

reflect vertically, and stretch horizontally by a factor of 3.  Sketch the original graph and the 
transformed graph.  Give the new equation. 

v. Shift the points (0,0), (1,3), (2,5), (4,12) horizontally right by 1, reflect vertically, compress 
vertically by 2. 

vi. List the transformations applied to the function 4 ( 3)f x− + . 

vii. List the transformations applied to the function ( 1) 4f x− + − .  

viii. List the transformation applied to the function ( )
1

3( 1) 5
2

f x− − + . 

ix. List the transformations applied to the equation 22( 3) 4( 5) 8x y− + + =  [Hint: remember 

that this isn’t a function!  Both variables behave the same.] 
x. How do the tranformations on (iv) change the domain and range of the function? 

 
 


