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Singular Points 
 

A singular point is a term for a point value of a variable which makes a function undefined at 

that value (and not on any part of the open interval around that value).  A singular point, for 

instance, is typically a point for which the denominator of the function is equal to zero.  If the 

denominator function is continuous and smooth, this will happen at only a single point, or at a set 

of discrete single points.  In the case of polynomials, this set will be finite, however, it could be 

infinite, if the denominator function in question is a trigonometric function, for instance.  All 

other points for which the function is defined (where the denominator is not equal to zero), are 

called ordinary points.   

 

Let us look at some examples. 

 

Example 1. In the function 𝑝(𝑥) =
𝑥−2

𝑥3−𝑥
, locate any singular points. 

 

Here, we have a simple rational expression, so to find the singular points, we must determine 

where the denominator could be zero. 

 

𝑥3 − 𝑥 = 𝑥(𝑥2 − 1) = 𝑥(𝑥 − 1)(𝑥 + 1) = 0 
 

We can see that if then allow each factor to be equal to zero, we obtain the values x=0, x= -1, x=1 

as our singular points.  All other values of x are ordinary points. 

 

Example 2. Find any singular points in the function 𝑞(𝑥) =
𝑥

sin(𝑥)
. 

 

Again, since we are dealing with some kind of fraction, we’ll set the denominator equal to zero. 

 

sin(𝑥) = 0 
 

But for what values of x is this true?  Any multiple of π will work.  This is an infinite set of 

values, but each point is discrete.  Our original q function is perfectly well defined everywhere 

except at these discrete points.  All these other points are ordinary points, but x=kπ, (k=0, ±1, 

±2,…) are all singular points. 

 

Example 3. Find the singular points of the function 𝑟(𝑥) =
tan(𝑥)

ln(𝑥)
. 

 

Let us consider the denominator first.  ln(𝑥) is defined for values greater than zero.  For any 

value on the interval (−∞, 0], the denominator and thus the entire expression are not defined.  

These are not singular points, however, since this is a continuous interval and not a discrete 

point.  There is one other place that the denominator is zero, however, that is when x=1, since 

ln(1)=0.  This is a discrete point, and so, x=1 is a singular point. 

 

We aren’t done yet, though.  In the previous examples, the functions in the numerator were 

defined everywhere and so we did not need to consider them.  Not so in this example.  tan(𝑥) 
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itself is undefined for some values of x and so we must look at these as well.  Since tan(𝑥) =
sin(𝑥)

cos(𝑥)
 we must consider the values of x where cos(𝑥) = 0.  This occurs for odd multiples of 

𝜋

2
 or 

𝑥 =
(2𝑘+1)𝜋

2
(𝑘 = 0 ± 1, ±2,… ).  These values are also singular points since they are discrete 

values of x. 

 

Practice Problems.  Find all the singular points in each of these functions below.  For each 

differential equation, a singular point of any coefficient function (when the equation is in 

standard form) is a singular point of the entire equation, even if the point is only undefined in 

one of the functions. 

1. 𝑝(𝑥) =
𝑥+1

𝑥2
 

2. 𝑞(𝑥) = 6 cot(𝑥) 

3. 𝑟(𝑥) =
1

1−𝑒−𝑥/2
 

4. 𝑠(𝑥) =
𝑥

sin𝑥
 

5. 𝑦′′ +
2

𝑥
𝑦′ +

𝑥+1

2𝑥2
𝑦 = 0 

6. 𝑦′′ +
2𝑥

1+2𝑥
𝑦′ −

3

1+2𝑥
𝑦 = 0 

7. 𝑥2(𝑥 − 3)2𝑦′′ + (𝑥 − 3)𝑦′ + 5𝑥2𝑦 = 0 

8. (𝑥 sin 𝑥)𝑦′′ + (cos 𝑥) 𝑦′ + (ln 𝑥)𝑦 = 0 
 

 

 

In differential equations, particularly when working with series solutions, we prefer to solve 

around ordinary points when we can because we avoid complications associated with singular 

points.  This is not always possible and there are circumstances where we may wish to work at 

the point that is problematic (singular).  To know whether or not we can, we need one further 

distinction: that between a regular singular point, and an irregular one.  (This is a topic that 

also comes up in other topics such as working with complex variables.) 

 

Defining a regular singular point is a bit tricky, but an irregular singular is easy: singular points 

are irregular if they are not regular.  But let’s look at the definition of regular singular points.  I 

am going to define them here in the context of a differential equation since that will be our 

application for them, but the definition is similar adjusted for other contexts. 

 

Consider the second order linear differential equation in standard form: 𝑦′′ + 𝑝(𝑥)𝑦′ + 𝑞(𝑥)𝑦 =
𝑔(𝑥).  The point c is a regular singular point if all three of the following conditions hold: 

 

1) c is a singular point for p(x) or q(x). 

2) (𝑥 − 𝑐)𝑝(𝑥) the limit exists at c (i.e. the reduced form could be defined, or a technique 

like L’Hôpital’s should be able to resolve the limit to a finite value). 

3) (𝑥 − 𝑐)2𝑞(𝑥) the limit exists at c (i.e. the reduced form is defined at c, or apply 

L’Hôpital’s Rule and obtain a finite value; put another way, the point must be a hole and 

not an asymptote). 
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Each singular point must be classified separately, so it is possible for some of them to be regular 

and some to be irregular in the same differential equation. 

 

It should also be noted here that as the number of derivatives in the function goes up, so do the 

conditions.  For instance in the third order linear differential equation  𝑦′′′ + 𝑝(𝑥)𝑦′′ + 𝑞(𝑥)𝑦′ +
𝑟(𝑥)𝑦 = 𝑔(𝑥) would add the fourth condition that (𝑥 − 𝑐)3𝑟(𝑥) would need to be defined at c.  

The further away you get from the leading derivative, the more powers of (x-c) you are allowed 

to try to clear the singularity in the denominator. 

 

In particular, you will note that regular singular points are defined by asymptotes of rational 

expressions and zeros of the polynomials in the denominators.  If the singular points come from 

non-rational expressions (like trigonometric functions, for example) this procedure of 

multiplying by powers of (x-c) will sometimes have no effect as with 
𝑥

1−𝑐𝑜𝑠𝑥
, or they may 

produce special cases like 
𝑥

sin𝑥
.  If the expression has a limit which is not finite, these points will 

be irregular. 

 

Example 4. Consider the differential equation 𝑦′′ +
𝑥2+3

𝑥(𝑥−1)2
𝑦′ +

𝑥+1

𝑥2(𝑥−1)
𝑦 = 0. 

 

Here we identify 𝑝(𝑥) =
𝑥2+3

𝑥(𝑥−1)2
 and 𝑞(𝑥) =

𝑥+1

𝑥2(𝑥−1)
.  Both functions are undefined at x=0, and 

x=1, and so both these points are singular points.  Let us set about classifying them. 

 

i) For the case of c=0, the factor we will use to test for regularity is (x-0) or just x. 

 

𝑥𝑝(𝑥) = 𝑥
𝑥2 + 3

𝑥(𝑥 − 1)2
=

𝑥2 + 3

(𝑥 − 1)2
 

𝑥2𝑞(𝑥) = 𝑥2
𝑥 + 1

𝑥2(𝑥 − 1)
=

𝑥 + 1

(𝑥 − 1)
 

 

Now consider the point x=0.  Are these functions defined at this point now?  Yes, because the 

factors of x were successfully cancelled in the denominators, so the reduced form is defined at 

x=0, so we don’t have to go on to advanced techniques to check the limit here.  So x=0 satisfies 

the conditions of a regular singular point. 

 

ii) Let’s now consider the case of c=1, using the factor (x-1): 

 

(𝑥 − 1)𝑝(𝑥) = (𝑥 − 1)
𝑥2 + 3

𝑥(𝑥 − 1)2
=

𝑥2 + 3

𝑥(𝑥 − 1)
 

(𝑥 − 1)2𝑞(𝑥) = (𝑥 − 1)2
𝑥 + 1

𝑥2(𝑥 − 1)
=
(𝑥 + 1)(𝑥 − 1)

𝑥2
 

 

This procedure produced an extra factor of (x-1) in the numerator of the second test, but this 

doesn’t matter because it did successfully eliminate the factor in the denominator of this 

expression.  What about the first one though?  There is still a factor of (x-1) left in the 



Betsy McCall 

 
4 

denominator, and so the expression is still undefined.  Since there is a zero in the denominator, 

but not in the numerator, or advanced limit techniques will not apply.  This means that x=1 is an 

irregular singular point since it failed our test for regularity. 

 

Thus, this equation has one regular singular point at x=0, one irregular singular point at x=1, and 

all other points are ordinary. 

 

 

Example 5.  Determine if there are any singular points in the differential equation 𝑦′′ +
1

𝑥 ln𝑥
𝑦′ +

𝑥

sin𝑥
𝑦 = 0.  Classify each singular point as regular or irregular. 

 

Here, our 𝑝(𝑥) =
1

𝑥 ln𝑥
 and 𝑞(𝑥) =

𝑥

sin𝑥
.  𝑝(𝑥) is undefined at x=0, and x=1.  And 𝑞(𝑥) is 

undefined at all multiples of π including 0.  Thus, our set of singular points is 𝑥 =
{0, 1, ±𝜋,±2𝜋, , … }.  The multiples of π will all behave the same, but we will consider them last.  

Let’s start with x=0. 

 

i) As in Example 4, we will multiply by x to test our regularity conditions. 

𝑥𝑝(𝑥) = 𝑥
1

𝑥 ln 𝑥
=

1

ln 𝑥
 

𝑥2𝑞(𝑥) = 𝑥2
𝑥

sin 𝑥
=

𝑥3

sin 𝑥
 

 

Our test with p(x) worked in the sense that it cancelled the x factor, but ln(x) is still undefined 

at x=0.  In any case, let’s consider q(x) anyway: the expression is still undefined at x=0.  So 

what we need to do is check the limit to see if it exists and is finite: 

 

lim
𝑥→0

𝑥3

sin 𝑥
= (lim

𝑥→0

𝑥

sin 𝑥
) (lim

𝑥→0
𝑥2) = (1)(0) = 0 

 

Our limit does exist at x=0, so x=0 is an irregular singular point (because the test with p(x) 

failed). 

 

ii) We’ll use the factor (x-1) to test the point c=1. 

 

(𝑥 − 1)𝑝(𝑥) = (𝑥 − 1)
1

𝑥 ln 𝑥
=
𝑥 − 1

𝑥 ln 𝑥
 

(𝑥 − 1)2𝑞(𝑥) = (𝑥 − 1)2
𝑥

sin 𝑥
=
𝑥(𝑥 − 1)2

sin 𝑥
 

 

 

Our q expression was never a problem at x=1, so this is fine, but our p expression is still 

undefined at x=1 since the factor (x-1) cannot cancel with all or part of ln(x).  Therefore, we need 

to check the limit: 
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lim
𝑥→1

𝑥 − 1

𝑥 ln 𝑥
= lim

𝑥→1

1

ln 𝑥 + 1
=

1

0 + 1
= 1 

 

Using L’Hôpital’s rule, we find that the limit does exist and is finite, so x=1 is a regular singular 

point. 

 

iii) Let’s finally look at these multiples of π.  We’ll consider the factor (x-π) as the 

simplest case since we can expect all these factors to remain the same. 

 

(𝑥 − 𝜋)𝑝(𝑥) = (𝑥 − 𝜋)
1

𝑥 ln 𝑥
=
𝑥 − 𝜋

𝑥 ln 𝑥
 

(𝑥 − 𝜋)2𝑞(𝑥) = (𝑥 − 𝜋)2
𝑥

sin 𝑥
=
𝑥(𝑥 − 𝜋)2

sin 𝑥
 

 

This is a bit of the reverse of our previous results at x=1, but the conclusion is the same. The p 

expression never had a problem at π, so all is well.  But our q expression remains undefined at π 

since (x-π) and sin(x) cannot cancel with each other, but the expression is a form of 0/0, so we 

need to apply L’Hôpital’s rule to see what is happening.   

 

lim
𝑥→𝜋

𝑥(𝑥 − 𝜋)2

sin 𝑥
= lim

𝑥→𝜋

(𝑥 − 𝜋)2 + 2𝑥(𝑥 − 𝜋)

cos 𝑥
=
0 + 2𝜋(0)

−1
= 0 

 

The result will be repeated for all possible multiples of π, and so we conclude that they are all 

regular singular points. 

 

Example 6. Find the singular points (if any) of 𝑦′′ + (
1

1−𝑐𝑜𝑠𝑥
) 𝑦′ + (cot 𝑥)𝑦 = 0 and determine 

if they are regular or irregular. 

 

Our singular points are going to occur at all multiples of π since that’s where cot(x) will be 

undefined there.  The expression 𝑝(𝑥) =
1

1−cos𝑥
 will be undefined when cos(x)=1, or only even 

multiples of π.   

 

i) Let’s consider the case of x=0. 

 

𝑥𝑝(𝑥) =
𝑥

1 − cos 𝑥
 

𝑥2𝑞(𝑥) = 𝑥2 cot(𝑥) 
 

In both of these cases, we’ll have to check the limit using L’Hôpital’s rule or employing some 

special limits. 

 

lim
𝑥→0

𝑥

1 − cos 𝑥
= lim

𝑥→0

1

sin 𝑥
=
1

0
 

lim
𝑥→0

𝑥2 cot(𝑥) = lim
𝑥→0

𝑥2 cos(𝑥)

sin 𝑥
=
(0)(1) − (0)(0)

(1)
= 0 
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Our q(x) term reduced to a defined limit nicely, but the p(x) term did not.  The behaviour here is 

still asymptotic, so the point x=0 is an irregular singular point. 

 

ii) Use the model of Examples 4 and 5 to examine the points x=π, and x=2π.  What can 

you generalize about the rest of the points based on these examples? 

 

Practice Problems.  Find all the singular points of the differential equations below and 

determine whether each one is regular or irregular. 

1. 𝑦′′ +
(9−𝑥2)

𝑥(1−𝑥)2
𝑦′ +

2+5𝑥

𝑥2(1−𝑥)2
𝑦 = 0 

2. 𝑦′′ +
1

𝑥
𝑦′ +

1

𝑥3
𝑦 = 0 

3. 𝑥3𝑦′′ − (1 − cos 𝑥)𝑦′ + 𝑥𝑦 = 0 

4. 𝑥2(𝑥 − 3)2𝑦′′ + (𝑥 − 3)𝑦′ + 5𝑥2𝑦 = 0 

5. 𝑥2𝑦′′ + (6𝑥 + 𝑥2)𝑦′ + 𝑥𝑦 = 0 

6. 𝑥2(𝑥 − 2)2𝑦′′ + sin(𝑥) 𝑦′ + (2 − 𝑥)𝑦 = 0 

7. 3𝑥(𝑥 − 2)2𝑦′′ + 2𝑥𝑦′ + (𝑥 − 2)𝑦 = 0 
8. Finish part (ii) in Example 6. 

9. (1 − ln 𝑥)𝑦′′ + 2𝑥𝑦′ + (𝑥𝑙𝑛2𝑥)𝑦 = 0 

10. 𝑥𝑦′′ + 4(csc 𝑥)𝑦′ + (cot 𝑥)𝑦 = 0 

11. (sin2 𝑥) 𝑦′′ − 5𝑒𝑥𝑦′ +
𝑥

𝑒𝑥−1
𝑦 = 0 

12. (𝑥2 + 1)𝑥2𝑦′′ + 2(𝑥4 − 1)𝑦′ − 12(𝑥 − 1)3𝑦 = 0 
 

 


