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Discrete Dynamical Systems 
 
Discrete dynamical systems are systems of variables that are changing over time measured in discrete 
units (rather than continuously) such as in days, weeks, seconds, etc.  We will be looking at such systems 
that can be modeled linearly so that they can be modeled with a matrix.  One common example is a 
predator-prey model where one species (the predator) survives by consuming the second species (prey), 
and the prey reproduces to replenish the species.  The rate at which the prey is consumed by the 
predators can change the stability of the system.  There are many examples of such systems that have 
only one variable, but we will be considering examples similar to the predator-prey model, or some 
chemical reaction models, where two (or more) variables are needed to describe the system. 
 
*Side note: Markov chains that we looked at earlier in the course are also a type of discrete dynamical 
system.  We will now be considering a slightly more generic situation where the entries of the matrix 
describing the system need not be probabilities. 
 
We will consider the problem geometrical, and then discuss applications. 
 
Consider a system of two (or more) variables that change over time according to a linear function 

according to the formula 1k kAx x  .  A is the matrix of the linear transformation, and kx is the state of 

the system at some time k, with 
1kx 

 the state of the system at the next time step.  A sequence of such 

time steps, 0 1 2 3 4, , , , ,... nx x x x x x  is called a trajectory. 

 
Example 1.  Consider the system of equations given below relating two variables.  Write the matrix that 

represents the system, and give ten points of the trajectory given an initial state vector of 𝑥0⃗⃗⃗⃗ = [
5
20

].  

Plot the points. 
 

. 2𝑎𝑘 + .5𝑏𝑘 = 𝑎𝑘+1 
−.5𝑎𝑘 + 1.3𝑏𝑘 = 𝑏𝑘+1 

 

The matrix for the system, A, is equal to [
. 2 . 5
−.5 1.3

].  To find the next point in the trajectory, we just 

multiply the state vector by the matrix. 
 

𝐴𝑥0⃗⃗⃗⃗ = [
. 2 . 5
−.5 1.3

] [
5
20

] = [
11

23.5
] = 𝑥1⃗⃗⃗⃗  

𝐴𝑥1⃗⃗⃗⃗ = [
. 2 . 5
−.5 1.3

] [
11

23.5
] = [

13.95
25.05

] = 𝑥2⃗⃗⃗⃗  

 
And so forth to obtain the sequence 
 

[
5
20

] , [
11

23.5
] , [

13.95
25.05

] , [
15.315
25.59

] , [
15.858
25.610

] , [
15.976
25.363

] , [
15.877
25.984

] , [
15.667
24.541

] , [
15.404
24.070

] , [
15.116
23.588

] , [
14.817
23.107

] 

 
The plotted graph from the calculator is shown here, starting at the 
bottom left corner. 
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Calculator note: To obtain the trajectory with the fewest number of keystrokes, enter the matrix into 
Matrix [A] and the state vector into Matrix [B].  Then multiply [A]*[B] on the calculator screen as shown.  
This is the second state vector. 
 

Then multiply the Matrix [A] by Ans as shown.  

The Ans key is  .  After that, 
just keep hitting enter to obtain the sequence 
of points.  Then you can plot the points by 

going to the  menu and select Edit to 

enter the data into the lists.  Use L1 and L2.  To see the graph go to  to turn on the 
Stat Plot.  Choose 
Plot1.  Select On, 
and the connected 
line graph (the 
second choice under 
Type.  And Choose 

either the square box or the + sign for the graph.  The dot will be impossible to see once the line is 

drawn.  Then select  #9 (for ZoomStat) to see the graph; this function sets the window 
dimensions to best see the data in the lists.  Be sure to delete any other graphing from your graphing 
screen or it will also plot and may appear on your graph.  This procedure produced the graph shown 
above. 
 
This model is interesting because it appears that both variables increase at first, and then after some 
time, both begin to decline.  We are interested in the long-term behaviour of these systems, without, 
necessarily, plotting a hundred points of the trajectory.  To study this, we will need to obtain the 
eigenvalues and eigenvectors of the matrix A. 
 
Example 2.  Find the eigenvalues and eigenvectors of the system in Example 1, and plot the eigenvectors 
on a graph.  Compare with the established trajectory. 
 

The matrix 𝐴 = [
. 2 . 5
−.5 1.3

].  To find the eigenvalues of the matrix we subtract λ from the diagonal 

entries and calculate the determinant. 
 

|
. 2 − 𝜆 . 5
−.5 1.3 − 𝜆

| = (. 2 − 𝜆)(1.3 − 𝜆) + .25 = 𝜆2 − 1.5𝜆 + .51 = 0 

 
We can use the quadratic formula to find the eigenvalues from the characteristic equation. 
 

𝜆 =
1.5 ± √(1.5)2 − 4(1)(.51)

2(1)
=

1.5 ± √. 21

2
≈ 0.979… , 0.52087… 
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We have to be extremely careful finding the eigenvectors of the matrix since we have a square root 
involved.  Rounding errors will likely make it almost impossible to solve and reduce the matrix in the 
calculator.  But since there are only two variables, we know that both equations will be multiples of each 
other, so we can choose the one we would prefer to work with. 
 
For the larger λ, we have: 
 

[
. 2 − 𝜆 . 5
−.5 1.3 − 𝜆

] =

[
 
 
 
 . 2 −

1.5 + √. 21

2
. 5

−.5 1.3 −
1.5 + √. 21

2 ]
 
 
 
 

=

[
 
 
 
 −.55 −

√. 21

2
. 5

−.5 . 55 −
√. 21

2 ]
 
 
 
 

 

 
We’ll use the bottom equation to avoid the radicals in the denominator. 
 

−.5𝑥1 + (. 55 −
√. 21

2
)𝑥2 = 0 

𝑥1 =

. 55 − √. 21
2

⁄

. 5
𝑥2 ≈ 0.642𝑥2 

𝑣1⃗⃗⃗⃗ = [
0.642

1
] 

 
And we know that the other eigenvector, for the second eigenvalue is the conjugate of this:  
 

𝑥1 =

. 55 + √. 21
2

⁄

. 5
𝑥2 ≈ 2.496𝑥2 

𝑣2⃗⃗⃗⃗ = [
2.496

1
] 

 
 
We can plot these as lines on our graph if we replace 𝑥1 with x, and 𝑥2 with y.  The behaviour of the 

system is governed by the eigenvectors and the eigenvalues.  We can see 
what’s likely to happen from representing the state vectors in the 
coordinate system of the eigenvectors: 
 

𝑥𝑘⃗⃗⃗⃗ = 𝑐1𝑣1⃗⃗⃗⃗ + 𝑐2𝑣2⃗⃗⃗⃗  
 
Each time we multiply the vector in this form by the matrix, we multiply 
each component eigenvector by the corresponding λ. 
 

𝑥𝑘+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝑐1𝜆1𝑣1⃗⃗⃗⃗ + 𝑐2𝜆2𝑣2⃗⃗⃗⃗  
  
So after n steps we have  
 

𝑥𝑘+𝑛⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝑐1𝜆1
𝑛𝑣1⃗⃗⃗⃗ + 𝑐2𝜆2

𝑛𝑣2⃗⃗⃗⃗  
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If |λ| > 1, then this component of the vector will grow without bound.  If |λ|=1 (as we saw in the 
Markov chain examples) we will have an equilibrium vector that will remain stable over time (although if 
it’s equal to negative one, it will oscillate between two values).  If |λ| < 1, then raising this to a large 
power will make this component go to zero and it won’t contribute much to the problem over time. 
When both eigenvalues are greater than one, the system will grow without bound.  If one eigenvalue is 
greater than one, but the other one is less than one, the system will approach the eigenvector to the 
larger eigenvalue because the component from the other eigenvector will eventually vanish.  If, as in 
this case, both eigenvalues are less than one, the long-term behaviour of the system is to collapse to 
zero.  On the graph below, I plotted some more points of the trajectory for our system (spaced 5-10 
steps apart). 

 
Each of these types of systems have a special name.  The one in our 
example, the origin acts like an attractor or a sink since both |λ|<1. 
 
In the case where both |λ|>1, the origin acts like a repeller or a source. 
 
 

When one |λ|<1 and one |λ|>1, the origin is a saddle point, in that it attracts along one eigenvalue and 
repels along the other.  The specific behaviour of the system is dependent on where the system begins, 
since some initial values will cause the system to collapse, but most will eventually move away from the 
origin in the direction of the eigenvector corresponding to the larger eigenvalue. 
 
A graph of a saddle point solution is shown below with 
the behaviour of some sample trajectories. 
 
The arrows on the eigenvectors indicate whether the 
origin is repelling or attracting along that vector. 
 
In the special case of a Markov chain, one eigenvalue is 
equal to 1 and the other is less than one.  This is what 
produces an equilibrium or steady-state value. 
 
If one eigenvalue is equal to one and one is greater than 
one, the system will behave like a repeller unless you 
happen to get lucky and start with a point on the 
equilibrium vector. 
 
In the special case where one eigenvalue is -1, then the 
two cases above will be modified to include an 
oscillation.  The equilibrium with be two valued and the system will flip back-and-forth between those 
two values, or it will behave like a repelling but with the same type of flipping behaviour relative to one 
of the eigenvectors, but the system will still move away from the origin. 
 
These other types of cases with real eigenvalues are shown below.  These types are graphs are called 
phase portraits. 
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The other kind of situation we could encounter is one where the eigenvalues of the matrix are complex. 
 

Example 3. Consider the matrix of a discrete dynamical system given by 𝐴 = [
. 2 . 5
−.7 1.3

].  This matrix is 

similar to the matrix we were examining before except for the entry on the bottom right corner.  But 
this is going to make a big difference in the behaviour of the system when we find the eigenvalues. 
 

|
. 2 − 𝜆 . 5
−.7 1.3 − 𝜆

| = (. 2 − 𝜆)(1.3 − 𝜆) + .35 = 𝜆2 − 1.5𝜆 + .61 = 0 

 

=
1.5 ± √(1.5)2 − 4(1)(.61)

2(1)
=

1.5 ± √−.19

2
≈ 0.75 ± .2179𝑖 

 
We no longer have real eigenvectors either, so we can’t plot those, but we can examine a trajectory to 
see what happens to the system over time.  Let’s start with the same initial state that we used in 

Example 1, 𝑥0⃗⃗⃗⃗ = [
2
5
]. 

 

Repeller 
Both |λ|>1 

Attractor 
Both |λ|<1 
 

Equilibrium 
|λ|<1, one λ=1 
 

Oscillating 
one |λ|<1, 
 one λ=(-1) 
 

even steps 

odd steps 
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[
5
20

] , [
11

22.5
] , [

13.45
21.55

] , [
13.465
18.6

] , [
11.993
14.755

] , [
9.776
10.786

] , [
7.348
7.178

] , [
5.059
4.188

] , [
3.106
1.904

] , [
1.573
0.301

] , [
0.465
−.710

] 

 
The plot of these points and several more in the trajectory results in the graph below and blown up 

around the origin.  The trajectory spirals into the 
origin rather than going to the origin more or less 
in a straight line.  In Example 1, the coordinates 
of our system were never negative, but here, 
they not only dip into the negative, they pop 
back up into positive values again and on it goes 
with smaller and smaller numbers. 

 
As with real eigenvalues, we can predict this kind of behaviour from the eigenvalues.  We need to find 
the magnitude of the eigenvalues and to do that we need to remember how to find the modulus of a 
complex number. 
 

‖𝑎 + 𝑏𝑖‖ = √𝑎2 + 𝑏2 
 

So in this example our |λ|=√(.75)2 + (
√.19

2
)
2

= √0.61 ≈ 0.7810.  This value is clearly less than 1.  

When working with complex numbers, the magnitude of a complex number and its conjugate are 
exactly the same, so it’s impossible to have a saddle point with a complex number.  Except in the special 
cases where the magnitude is exactly 1, the origin will either be a repeller or an attractor. 
 
Based on the complex eigenvalues, we can even figure out the rate of rotation.  Recall the similarity 

transformation for complex eigenvalues with 𝐶 = [
𝑎 −𝑏
𝑏 𝑎

].  In our case, 𝐶 = [
0.75 −.2179

0.2179 0.75
].  

Scaling this by the length (which we found above) we can find the angle.  𝜃 = 𝑐𝑜𝑠−1 (
0.75

0.7810
) , 𝑎𝑛𝑑 𝜃 =

𝑠𝑖𝑛−1 (
0.2179

0.7810
) , 𝑠𝑜 𝜃 ≈ 0.283 𝑟𝑎𝑑𝑖𝑎𝑛𝑠 𝑜𝑟 16.2°. 

 
These are both positive, so the angle is in the first quadrant.  Be sure to check that your results to ensure 
that your answers are in the correct quadrant. 
 
If |λ|>1, then the graph produced spirals outward. The speed at 
which this happens will depend on how close to 1 modulus is. 
 
In the special case where λ has a modulus of exactly 1, in other 
words, it lies on the unit circle, the values produced by the system 
will remain on the unit circle.  Whether the graph is strictly periodic 
or not will depend on whether the angle and the circle have a least 
common multiple. 
 
Practice Problems. 

1. For each of the matrices below, plot a trajectory of at least 
15 points.  Determine from the graph whether the system 
is an attractor, a repeller or a saddle point (or one of the special cases). 

a. 𝐴 = [
. 38 . 24
−.36 1.22

], 𝑥0⃗⃗⃗⃗ = [
15
20

]. 
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b. 𝐴 = [
1 −1
2 4

], 𝑥0⃗⃗⃗⃗ = [
2
5
] 

c. 𝐴 = [

37

21

10

21
15

21

12

21

] , 𝑥0⃗⃗⃗⃗ = [
1
2
] 

d. 𝐴 = [
2 0
0 . 5

] , 𝑥0⃗⃗⃗⃗ = [
5
3
] 

e. 𝐴 = [
1 0.5
1 1.5

] , 𝑥0⃗⃗⃗⃗ = [
−2
10

] 

f. 𝐴 = [
1.71 −0.707
1 0

] , 𝑥0⃗⃗⃗⃗ = [
11
13

] 

g. 𝐴 = [
1.8 −.81
1 0

] , 𝑥0⃗⃗⃗⃗ = [
15
3

] 

h. 𝐴 = [
1.24 −.97
1 0

] , 𝑥0⃗⃗⃗⃗ = [
−2
12

] 

i. 𝐴 = [
1.24 −1.03
1 0

] , 𝑥0⃗⃗⃗⃗ = [
−5
−8

] 

2. The word problems here are discrete dynamical systems.   Build the matrix model of the system.  
Determine the behaviour of the origin in the model. 
a. The glucose and excess hormone concentration in your blood are modeled by the system of 

equations given by 
1

1

0.978 0.006

0.004 0.992

k k k

k k k

g h g

g h h





 


 
. 

b. The system of equations 
1

1

2 k k

k k k

a n

n a a








 
models the birth of a lilac bush where n is the 

number of new branches, and a is the number of old branches. 
c. Two interacting populations of hares and foxes can be modeled by the system of equations 

1

1

4 2k k k

k k k

h f h

h f f





 


 
. 

d. Suppose that spotted owls are dinning on tasty squirrels according to the model 

1

1

0.4 0.3

0.325 1.2

k k k

k k k

O S O

O S S





 

  

. 

 
  
 
 
 


