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Vector Spaces and Subspaces 
 

 
A vector space is a set of elements that obeys the properties of vector addition and scalar 
multiplication that vectors also obey. 
 
A subspace is a subset of elements in a vector space that within that set also obeys the 
properties of vector addition and scalar multiplication. 
 
Do not get too hung, however, on the use of the term “vector”.  Vectors are the model object 
for this class of sets, but they are not the only things that create vector spaces.  We will look at 

sets that are finite dimensional, which are isomorphic to traditional vector spaces in Rn, but we 
will also look at infinite dimensional vector spaces which cannot be modeled as vectors, but still 
obey all the required properties. 
 
Recall from our initial discussion of vectors what the properties of vector addition and scalar 
multiplication entail: 
 

i. �⃗� + 𝑣  exists in the space 
ii. 𝑐�⃗�  exists in the space 
iii. �⃗� + 𝑣 = 𝑣 + �⃗�  
iv. (�⃗� + 𝑣 ) + �⃗⃗� = �⃗� + (𝑣 + �⃗⃗� ) 

v. �⃗� + 0⃗ = 0⃗ + �⃗� = �⃗�  

vi. �⃗� + (−�⃗� ) = −�⃗� + �⃗� = 0⃗  
vii. 𝑐(�⃗� + 𝑣 ) = 𝑐�⃗� + 𝑐𝑣  
viii. (𝑐 + 𝑑)�⃗� = 𝑐�⃗� + 𝑑�⃗�  
ix. 𝑐(𝑑�⃗� ) = (𝑐𝑑)�⃗�  
x. 1�⃗� = �⃗�  

 
The good thing, though, is that we don’t need to check each of these properties to guarantee 
they are all satisfied.  As it turns out, these properties depend on three basic properties that all 
the rest follow from: 
 

i. 0⃗  exists in the space 
ii. �⃗� + 𝑣  exists in the space, where each �⃗� , 𝑣  are in the space 
iii. 𝑐�⃗�  exists in the space, where �⃗�  is in the space, and c is a real scalar 

 
(We can also talk about complex vector spaces, but we will consider only real vector spaces in 
this handout.) 
 
Property ii is sometimes called “closed under addition”, and property iii is sometimes referred 
to as “closed under scalar multiplication”. 
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These properties may remind you of linear transformations.  That’s because our linear 
transformation properties move from element from one vector space into another element in 
another.  What our linear transformation properties guarantee is that the target space is a 
subspace.   Therefore, these properties are related but they are not identical.  Vector spaces are 
sets of elements while the linear transformation properties refer to the mapping from one set 
into another. 
 
Example 1.  

Define 𝑊 = {[
𝑎
𝑏
𝑐
] , 𝑎 + 𝑏 + 𝑐 = 0}. 

The elements of W are a subset of R3.  What we want to know is if the set of vectors defined 

this way forms a subspace of R3, i.e. do the elements in W satisfy the properties of a vector 
space.  We determine this by checking the three required properties.  All of them must be 
obeyed to be a subspace. 
 

i. Check the first condition, is 0⃗  in the set?  Yes, since we can let a,b,c=0.  It holds that 

a+b+c=0+0+0=0 so this element is in the set, and this does give us [
0
0
0
] the 0⃗  element 

in R3. 

ii. What if we add two elements in the set W?  Consider two elements [
𝑎
𝑏
𝑐
]  𝑎𝑛𝑑 [

𝑑
𝑒
𝑓
] in 

W such that a+b+c=0 and d+e+f=0.  Adding them we obtain the vector [
𝑎 + 𝑑
𝑏 + 𝑒
𝑐 + 𝑓

].  

Does (a+d) +(b+e)+(c+f)=0?  Yes, since we can rearrange: (a+b+c)+(d+e+f)=0+0=0.  So 
the sum is in W. 

iii. What if we multiply a vector in W by a real scalar?  Consider 𝑘 [
𝑎
𝑏
𝑐
] = [

𝑘𝑎
𝑘𝑏
𝑘𝑐

].  To be in 

W, ka+kb+kc must equal 0, and it does since ka+kb+kc=k(a+b+c)=k(0)=0. 
 

The set W satisfies all the conditions, and so it is a subspace of R3. 
 
Example 2. 

Consider the set 𝐻 = {[
𝑎
𝑏2] , 𝑎, 𝑏 𝑟𝑒𝑎𝑙} as a subset of R2.  Is H a subspace? 

  
If H is not a subspace, we need only to show that one of the conditions fails.  To prove that it is 
a subspace, we must show that they all work.  If you’re not sure, proceed methodically and stop 
if anything doesn’t work out, but think carefully before you assume the condition holds.  If you 
have an intuition about a set, you can go directly to the disproof.  You need only one example 
to fail.  Here, it may help to note that H can be defined another way (and still have exactly the 
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same elements) as 𝐻 = {[
𝑥
𝑦] , 𝑥 𝑟𝑒𝑎𝑙, 𝑦 ≥ 0}.  The 𝑦 ≥ 0 condition comes from the fact that 

because b was real in the other definition, all squares of real numbers are positive or zero, so 
this is the same condition stated another way.  This definition, however, is a little easier to see 
how one of the conditions will fail. 
 

iii.  Scalar multiplication will fail if we consider the element [
1
4
], which is in H and 

multiply it by the real scalar (-1).  (−1) [
1
4
] = [

−1
−4

], but this is not in the set since the 

second term is not positive, or put in terms of the original definition, there is no real b 
such that 𝑏2 = −4. 

 
We must conclude, therefore, that H is not a subspace. 
 
In addition to traditional vectors forming vector spaces, we can also talk about any other sets 

that are isomorphic to Rn or a subspace of Rn as long as they add term-by-term, and scale term-

by-term.  Examples of this would include matrices such as 𝑀 = [
𝑎 𝑏
𝑐 𝑑

] which we can treat as 

isomorphic to �⃗� = [

𝑎
𝑏
𝑐
𝑑

] in R4, or polynomials (say, of degree less than or equal to three) such as 

𝑝(𝑡) = 𝑎0 + 𝑎1𝑡 + 𝑎2𝑡
2 + 𝑎3𝑡

3 which is isomorphic to 𝑣 = [

𝑎0

𝑎1

𝑎2
𝑎3

] also in R4.  Any set isomorphic 

to a vector space will itself be a vector space.  Whether a subset of these sets is a subspace will 
depend on the same tests we’ve previous considered. 
 
Example 3. 

Consider the set of 2x2 matrices with 𝑀 = {[
𝑎 𝑏
𝑐 0

] , 𝑎, 𝑏, 𝑐 𝑟𝑒𝑎𝑙}.  Is this a subspace (of all 2x2 

matrices)? 
 

i. If a,b,c=0, then �⃗⃗⃗� = [
0 0
0 0

], which is the 0⃗  vector in the space, and it is in the set. 

ii. Consider �⃗⃗� = [
𝑎 𝑏
𝑐 0

] , 𝑎𝑛𝑑 �⃗� = [
𝑑 𝑒
𝑓 0

].  The sum of these is �⃗⃗� + �⃗� = 𝐴 =

[
𝑎 + 𝑑 𝑏 + 𝑒
𝑐 + 𝑓 0

].  This entry is in the space, since the 𝑎11, 𝑎12, 𝑎21 are all real, and the 

𝑎22 entry is 0.  So the space is closed under addition. 

iii. Consider 𝑘�⃗⃗� = 𝑘 [
𝑎 𝑏
𝑐 0

] = [
𝑘𝑎 𝑘𝑏
𝑘𝑐 0

], which also fits the required pattern of the set, 

since ka, kb, and kc are all real, and the required second row-second column 
position is zero.  So the set is closed under scalar multiplication. 

 
Since the set meets all the requirements, M is a subspace. 
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Example 4.  

Is the set of all polynomials of degree less than or equal to three, called P3, a subspace of Pn 
(the set of all polynomials of degree less than or equal to n)?  These are polynomials of the 
form 𝑝(𝑡) = 𝑎0 + 𝑎1𝑡 + 𝑎2𝑡

2 + 𝑎3𝑡
3.* 

 

i. Is the 0⃗  vector in the set?  Well, the zero vector for the set of polynomials is p(t)=0.  
We can obtain that by allowing all the coefficients, 𝑎𝑖 be equal to zero. 

ii. Is the set closed under addition?  It should seem clear that if you add two 
polynomials with highest degree no larger than three, you will obtain another object 
of the same kind, but we can check the description explicitly: 𝑝(𝑡) = 𝑎 + 𝑏𝑡 + 𝑐𝑡2 +
𝑑𝑡3, 𝑞(𝑡) = 𝑒 + 𝑓𝑡 + 𝑔𝑡2 + ℎ𝑡3.  Adding, we get 𝑝(𝑡) + 𝑞(𝑡) = (𝑎 + 𝑏𝑡 + 𝑐𝑡2 +
𝑑𝑡3) +( 𝑒 + 𝑓𝑡 + 𝑔𝑡2 + ℎ𝑡3) = (𝑎 + 𝑒) + (𝑏 + 𝑓)𝑡 + (𝑐 + 𝑔)𝑡2 + (𝑑 + ℎ)𝑡3.  Are 
each of the coefficients still real?  Yes, so as we expected, it is closed under addition. 

iii. Finally, checking scalar multiplication.  What do you expect?  If you multiply a 
polynomial of a certain degree by a real scalar, do you change the degree, or do you 
get another polynomial of the same degree?  Check the math: 𝑘𝑞(𝑡) =
𝑘(𝑒 + 𝑓𝑡 + 𝑔𝑡2 + ℎ𝑡3) = (𝑘𝑒) + (𝑘𝑓)𝑡 + (𝑘𝑔)𝑡2 + (𝑘ℎ)𝑡3.  Are all the coefficients 
still real?  As expected, they are, so it is closed under scalar multiplication. 

 
*Note: This is a different set than polynomials of exactly degree three, since in such a set 
𝑎3 ≠ 0.  The wording of the set descriptions can matter a great deal, since the set of 
polynomials of degree exactly three does not contain the zero vector, since the polynomial 
𝑝(𝑡) = 0 has no degree formally speaking (whether that’s less than three is one thing since 
most constants are considered to be degree zero).  What is clear, however, is that this is not of 
degree exactly three. 
 

One can also note as we did previously that P3 is isomorphic to R4, so also for that reason, we 

conclude the P3 is a subspace. 
 
In addition to finite dimensional vector spaces as in our first four examples, we can also 
consider even more abstract vector spaces, particularly those with infinite dimensions. 
 
Example 5. 
Consider the set N of all functions that are neither even nor odd.  Is this a subspace of the set of 
all functions? 
 
Recall that even functions are functions such that 𝑓(𝑥) = 𝑓(−𝑥)  like 𝑥2, |𝑥|, 5 + 𝑥4, cos(𝑥), 

etc.  and odd functions are functions such that 𝑓(−𝑥) = −𝑓(𝑥) like 𝑥, 𝑥3,
1

𝑥
, sin (𝑥), etc.  

Functions which are neither odd nor even may be composed of combinations of odd and even 

terms, or may contain terms like 𝑒𝑥, √𝑥, ln (𝑥), etc., functions which are neither odd nor even 
on their own. 
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As is turns out, this is not a subspace, for two reasons, though, of course, you only need to 
show that one of the conditions fails. 
 

i. Does N contain the zero function?  In other words, is the function f(x)=0 even, odd or 
neither?  Zero, like other constant functions is an even function, and so therefore, 
f(x)=0 is not in the set N, and so it cannot be a subspace. 

ii. N also fails the addition test.  Consider the functions 𝑓(𝑥) = 3 − 𝑥 and 𝑔(𝑥) = 𝑥 +
𝑥2.  These functions are in the set N since they contain both odd and even elements, 
but if you add them 𝑓(𝑥) + 𝑔(𝑥) = 3 − 𝑥 + 𝑥 + 𝑥2 = 3 + 𝑥2, which is an even 
function, and so the sum is no longer in the set. 

 
So N is not a subspace. 
 
Example 6. 
Consider the set F with elements of all infinite series with a finite sum, i.e. ∑ 𝑎𝑖

∞
𝑖=0 = 𝐿.  Is this a 

subspace of the set of all infinite series? 
 

i. Is the zero element in the set?  Sure it is, since there is a finite sum such that each 
𝑎𝑖 = 0 for all I, and the sum of that ∑ 0∞

𝑖=0 = 𝐿 = 0.  We can add this series to any 
other series and obtain the second series back again, so it does act like the additive 
identity should. 

ii. Do two elements in the set add to another element in the set?  In other words, if I 
add two series with finite sums together, do I obtain a series with a finite sum?  
Sure, since ∑ 𝑎𝑖

∞
𝑖=0 + ∑ 𝑏𝑖

∞
𝑖=0 = ∑ (𝑎𝑖 + 𝑏𝑖)

∞
𝑖=0 , and if the sum of ∑ 𝑎𝑖

∞
𝑖=0 = 𝐿, and 

the sum of ∑ 𝑏𝑖
∞
𝑖=0 = 𝑀 then the sum of ∑ (𝑎𝑖 + 𝑏𝑖)

∞
𝑖=0 = 𝐿 + 𝑀 which must also be 

finite if L and M are finite.  So the sum is in the set. 
iii. Are scalar multiples in the set?  Yes, since 𝑘 ∑ 𝑎𝑖

∞
𝑖=0 = 𝑘𝐿, and if k is a real scalar, 

then it is finite, and the product of finite numbers is also finite. 
 
Therefore, F is a subspace. 
 
The main error that students make with these problems is to go through the motions of 
checking the three conditions, but then to not think about them.  You must think about what 
they mean, particularly for the more abstract cases, and not get too hung up on the notation. 
 
Practice Problems. 
Below is a list of sets with generally increasing levels of abstraction.  Determine if each set is a 
vector space (subspace).  Be sure to check all three conditions if it is a subspace.  If it is not a 
subspace, prove that it is not by showing how at least one of the conditions is violated by 
elements in the set. 

1. 𝑉 = {[
𝑎
𝑏
𝑐
] , 𝑎 = 𝑏 + 𝑐} 
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2. 𝑋 = {�⃗� ∈ 𝑅3|𝑤ℎ𝑒𝑟𝑒 𝐴𝑥 = �⃗� , 𝐴 = [
1 4 1
0 2 1
0 3 −2

0
−1
0

] , 𝑥 ∈ 𝑅4} [Hint: consider a random 

element in R4 like [

𝑥1

𝑥2

𝑥3
𝑥4

]  𝑎𝑛𝑑 [

𝑦1

𝑦2

𝑦3
𝑦4

], apply the transformation, and check the properties 

for a subspace.  What can you say in general about a linear transformation from a vector 
space into another set?] 

3. 𝑄 = {�⃗� ∈ 𝑅4|𝑤ℎ𝑒𝑟𝑒 𝑇(𝑥 ) = �⃗� , 𝑇(𝑥 ) = [

3𝑥1 − 2𝑥4

6𝑥2

−1
𝑥3 − 𝑥4

] , 𝑥 ∈ 𝑅4} [Hint: Compare with #2.] 

4. 𝑌 = {[
𝑥
𝑦] , 𝑥𝑦 ≥ 0} 

5. 𝑍 = {[
𝑥
𝑦] , 𝑥2 + 𝑦2 ≥ 1} 

6. 𝑆 = {[
𝑎 𝑏 𝑐
−𝑏 𝑎 𝑑

] , 𝑎 + 𝑏 + 𝑐 = 𝑑} 

7. 𝑇 = {[
𝑎 2
0 𝑏

] , 𝑎, 𝑏 𝑟𝑒𝑎𝑙} 

8. 𝑈 = {[
𝑎
𝑏3] , 𝑎, 𝑏 𝑟𝑒𝑎𝑙} 

9. 𝐵 = {[
𝑎 + 2 𝑏

𝑐 𝑑
] , 𝑎 + 𝑏 + 𝑐 = 𝑑} 

10. C = {𝑡ℎ𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑎𝑙𝑙 𝑐𝑜𝑚𝑝𝑙𝑒𝑥 𝑛𝑢𝑚𝑏𝑒𝑟𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑜𝑟𝑚 𝑎 + 𝑏𝑖, 𝑤ℎ𝑒𝑟𝑒 𝑎, 𝑏 𝑎𝑟𝑒 𝑟𝑒𝑎𝑙} 
11. 𝐷 = {𝑠𝑒𝑡 𝑜𝑓 𝑎𝑙𝑙 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑜𝑟𝑚 𝑝(𝑡) = 𝑎𝑡2, 𝑎 𝑟𝑒𝑎𝑙} 
12. 𝐴 = {𝑠𝑒𝑡 𝑜𝑓 𝑎𝑙𝑙 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙𝑠 𝑜𝑓 𝑑𝑒𝑔𝑟𝑒𝑒 𝑒𝑥𝑎𝑐𝑡𝑙𝑦 2} [Hint: note the difference in 

definition between D and A.  What is being excluded in A?] 
13. 𝐺 = {𝑡ℎ𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑎𝑙𝑙 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙𝑠 𝑜𝑓 𝑑𝑒𝑔𝑟𝑒𝑒 𝑙𝑒𝑠𝑠 𝑡ℎ𝑎𝑛 𝑓𝑖𝑣𝑒 𝑏𝑢𝑡 𝑔𝑟𝑒𝑎𝑡𝑒𝑟 𝑡ℎ𝑎𝑛 𝑜𝑛𝑒} 
14. 𝐽 = {𝑡ℎ𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑎𝑙𝑙 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙𝑠 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑝(𝑡)𝑑𝑖𝑣𝑖𝑑𝑒𝑠 𝑒𝑣𝑒𝑛𝑙𝑦 𝑏𝑦 (𝑡 − 1)} [Hint: 

write p(t) in factored form, with the factor (t-1) pulled out.  What does the other factor 
look like?] 

15. 𝐾 = {𝑡ℎ𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑎𝑙𝑙 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 𝑤𝑖𝑡ℎ 𝑎𝑛 𝑥 − 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 𝑎𝑡 𝑥 = 3} 
16. 𝐿 = {𝑡ℎ𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑎𝑙𝑙 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 𝑤𝑖𝑡ℎ 𝑎 𝑦 − 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 𝑎𝑡 0} [Hint: in other words, 

f(0)=0.] 
17. 𝑃 = {𝑡ℎ𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑎𝑙𝑙 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑓(0) = 2} 
18. 𝑅 = {𝑡ℎ𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑎𝑙𝑙 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑡 𝑑𝑒𝑓𝑖𝑛𝑖𝑡𝑒 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙𝑠} 
19. 𝐸 = {𝑡ℎ𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑎𝑙𝑙 𝑒𝑣𝑒𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠: 𝑓(𝑥) = 𝑓(−𝑥)} 
20. 0 = {𝑡ℎ𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑎𝑙𝑙 𝑜𝑑𝑑 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠: 𝑓(−𝑥) = −𝑓(𝑥)} 

21. ∆= {𝑡ℎ𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑎𝑙𝑙 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑜𝑟𝑚 𝑓(𝑥) = 𝑎𝑥−𝑛, 𝑤ℎ𝑒𝑟𝑒 𝑛 𝑖𝑠 𝑎𝑛𝑦 𝑛𝑎𝑡𝑢𝑟𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟,

𝑖𝑒. 𝑓(𝑥) =
𝑎

𝑥𝑛} 

22. 𝛺 = {𝑡ℎ𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑎𝑙𝑙 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 𝑤𝑖𝑡ℎ 𝑎 𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑎𝑠𝑦𝑚𝑝𝑡𝑜𝑡𝑒 𝑎𝑡 𝑥 = −2} 
23. 𝛤 = {𝑡ℎ𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑎𝑙𝑙 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑜𝑛 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 [0,1]} 

 


