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Mass & Center of Mass 
 
 
Calculating the total mass of an object requires a density function and a region (or path) the object 
occupies, and integrating over that region or path.  This handout will discuss several scenarios 
encountered in multivariable calculus including mass of a wire, mass of a lamina in a plane (in 
rectangular and polar coordinates), mass of a lamina over a surface, mass of a volume (in rectangular, 
cylindrical and spherical coordinates).  From there, we will extend the discussion to calculating the 
center of mass of a lamina in a plane and center of mass of a volume in various coordinate systems. 
 

1. Mass of a wire 
The mass of a wire has a density function typically provided in terms of density per unit length.  
Consequently, we can integrate this function only one time to obtain the total mass.  For these 
kinds of problems, we will need a line integral.  In general, we can describe the total mass as: 
 

𝑀 = ∫ 𝜌(𝑥, 𝑦, 𝑧)𝑑𝑠
𝐶

 

 
Where 𝐶 is a parametric equation that describes how the wire moves through space, 𝑟(𝑡); 𝜌 is 
the density function, and 𝑑𝑠 = ‖𝑟′(𝑡)‖𝑑𝑡. 
 
Example 1.  Find the mass of a wire with density function 𝜌(𝑥, 𝑦, 𝑧) = 𝑘𝑥2𝑧, over the path of a 

helix 𝑟(𝑡) = 4 cos(𝑡) 𝑖̂ + 4 sin(𝑡) 𝑗̂ +
1

2
𝑡 for two cycles.  

 
First, we find the density function in terms of the path, but 

substituting 𝑟(𝑡) = 𝑥(𝑡)𝑖̂ + 𝑦(𝑡)𝑗̂ + 𝑧(𝑡)�̂� into the density 
function. 
 

𝑥(𝑡) = 4 cos(𝑡) , 𝑧(𝑡) =
1

2
𝑡 

𝜌(𝑡) = 𝑘[4 cos(𝑡)]2 (
1

2
𝑡) = 8𝑘𝑡 cos2(𝑡) 

 
Next, we need to calculate 𝑑𝑠. 
 

𝑟′(𝑡) = −4 sin(𝑡) 𝑖̂ + 4 cos(𝑡) 𝑗̂ +
1

2
�̂� 

‖𝑟′(𝑡)‖ = √16 cos2(𝑡) + 16 sin2(𝑡) + (
1

2
)

2

= √16 +
1

4
= √

65

4
=

√65

2
 

 
Two cycles of this helix is 0 ≤ 𝑡 ≤ 4𝜋. 

 

Putting these elements together we obtain our integral 𝑀 = ∫ 8𝑘𝑡 cos2(𝑡) ∙
√65

2

4𝜋

0
𝑑𝑡. 

 

Completing the integration: 4√65𝑘 ∫ 𝑡 ∙
1

2
(1 + cos(2𝑡))𝑑𝑡

4𝜋

0
= 2√65𝑘 ∫ 𝑡 + 𝑡 cos(2𝑡) 𝑑𝑡

4𝜋

0
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The second piece needs to be completed by parts, with 𝑢 = 𝑡, 𝑑𝑣 = cos(2𝑡).  The result is  

2√65𝑘 [
1

2
𝑡2 +

1

2
𝑡 sin(2𝑡) −

1

4
cos(2𝑡)]

0

4𝜋

= √65𝑘 [(4𝜋)2 + 0 −
1

2
(1) − 0 − 0 +

1

2
(1)] = 

 

16𝜋2√65𝑘 
 
If 𝑘 = 1, this is approximately 1273.14 mass units. 

 
Practice Problems. 
Find the mass of the wire over the given path, and with the given density function. 

a. 𝜌(𝑥, 𝑦, 𝑧) = 𝑘𝑦𝑧, 𝑟(𝑡) = 𝑡𝑖̂ + 𝑡2𝑗̂ + 4𝑡�̂�, 0 ≤ 𝑡 ≤ 2 

b. 𝜌(𝑥, 𝑦, 𝑧) = 𝑘|𝑥𝑦|, 𝑟(𝑡) = √𝑡𝑖̂ + (𝑡 − 3)𝑗̂ + 4�̂�, 0 ≤ 𝑡 ≤ 5 
 
 

2. Mass of a lamina in a plane 
i. Rectangular Coordinates 

We will next look at calculating the pass of a lamina (a thin sheet) in a plane.    We will 
need the boundaries of the lamina 𝑅, and the density function 𝜌(𝑥, 𝑦) in units of mass 
per unit area.  While this type of problem can be done with one integral if the density 
function is constant, it requires two integrals for variable density. 
 

𝑀 = ∫ ∫ 𝜌(𝑥, 𝑦)
𝑅

𝑑𝐴 

 
Example 2. Find the mass of the lamina bounded by 𝑦 = 𝑥2, 𝑦 = 4, with density function 
𝜌(𝑥, 𝑦) = 𝑘𝑦. 
 
The limits of integration are the boundaries of the area of the lamina, and we integrate the 
density function.  Thus we obtain the integral 

𝑀 = ∫ ∫ 𝑘𝑦𝑑𝑦𝑑𝑥
4

𝑥2

2

−2

 

 
 

Integrating, we obtain: 

𝑘 ∫
1

2
𝑦2|

𝑥2

4

𝑑𝑥
2

−2

=
𝑘

2
∫ 16 − 𝑥4𝑑𝑥

2

−2

= 

𝑘

2
[16𝑥 −

1

5
𝑥5]

−2

2

= 

𝑘

2
[32 −

32

5
− (−32) + (−

32

5
)] =

𝑘

2
[64 −

64

5
] =

128𝑘

5
 

 
 
ii. Polar Coordinates 

We may also wish to find total mass in polar coordinates. 
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Example 3. We wish to find the total mass of one petal of 𝑟 = 3 cos(2𝜃), with density per unit 
area given by 𝜌 = 𝑘𝑟. 

Since the density depends on only the radius, it does not matter which 
petal we select.  To obtain bounds of integration, we find where 

3 cos(2𝜃) = 0.  We find that for the first petal 𝜃 =
𝜋

4
, −

𝜋

4
.  The limits of 

the radial direction are the rose and the origin.  Thus we obtain the 
integral 

𝑀 = ∫ ∫ 𝑘𝑟 ∙ 𝑟𝑑𝑟𝑑𝜃
3 cos(2𝜃)

0

𝜋
4

−
𝜋
4

 

 
Integrating, we obtain 

𝑘 ∫
1

3
𝑟3|

0

3 cos(2𝜃)

𝑑𝜃 =
𝑘

3
∫ 27 cos3(2𝜃)

𝜋
4

−
𝜋
4

𝑑𝜃 

𝜋
4

−
𝜋
4

= 9𝑘 ∫ cos 2𝜃 (1 − sin2 2𝜃)𝑑𝜃

𝜋
4

−
𝜋
4

 

= 9𝑘 [
1

2
sin 2𝜃 −

1

6
sin3 2𝜃]

−
𝜋
4

𝜋
4

= 9𝑘 [
1

2
(1) −

1

6
(1)3 −

1

2
(−1) +

1

6
(−1)3] = 9𝑘 [1 −

1

3
] = 6𝑘 

 
Practice Problems. 
Find the mass of the lamina with the given boundaries and density function. 

c. 𝜌(𝑥, 𝑦) = 𝑘𝑥𝑦, 𝑦 = 𝑥3, 𝑦 = √𝑥, 𝑥 > 0 
d. 𝜌(𝑟, 𝜃) = 𝑘𝜃, 𝑟 = 4 sin 𝜃  

e. 𝜌(𝑥, 𝑦) = 𝑘𝑥2, 𝑦 = √1 − 𝑥2, 𝑦 = √4 − 𝑥2, 𝑦 > 0 
 
 

3. Mass of a lamina over a surface 
To find the mass of a lamina over a surface, we set up a surface integral of the form 

∬ 𝜌(𝑥, 𝑦)𝑑𝑆. 
 
 
Example 4. Find the mass of the lamina over the surface 𝑧 = 𝑥2 + 𝑦2 inside the cylinder 𝑥2 +
𝑦2 = 16, bounded by the coordinate planes, whose density varies according to the function 
𝜌(𝑥, 𝑦) = 𝑥2𝑦. 
 
The coordinate planes restrict is to the first quadrant.  First we will find the normal vector and 
its magnitude for 𝑑𝑆.  The surface is 𝑧 = 𝑥2 + 𝑦^2.  Putting everything on one side of the 

equation we get 𝐺(𝑥, 𝑦, 𝑧) = 𝑥2 + 𝑦2 − 𝑧, and ∇𝐺 = 〈2𝑥, 2𝑥, −1〉.  The magnitude is ‖�⃗⃗⃗�‖ =

‖∇𝐺‖ = √4𝑥2 + 4𝑥2 + 1, so 𝑑𝑆 = √4𝑥2 + 4𝑦2 + 1𝑑𝐴.  Because of the surface and the 𝑑𝑆 
term, we will convert to polar coordinates to integrate. 
 

∫ ∫ (𝑟2 cos2 𝜃 𝑟 sin 𝜃)√4𝑟2 + 1𝑟𝑑𝑟𝑑𝜃
4

0

𝜋/2

0

= ∫ ∫ (𝑟4 cos2 𝜃 sin 𝜃)√4𝑟2 + 1𝑑𝑟𝑑𝜃
4

0

𝜋/2

0

 

 
We can switch the order of integration to integrate 𝜃 first, and then use trig substitution or 
numerical integration to complete the mass calculation. 
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∫ −
1

3
cos3 𝜃|

0

𝜋
2

𝑟4√4𝑟2 + 1𝑑𝑟
4

0

=
1

3
∫ 𝑟4√4𝑟2 + 1𝑑𝑟

4

0

=
3 ln(√65 + 8) + 263144√65

4608
≈ 460.404 

 
 
Practice Problems. 
Find the mass of the lamina over the indicated surface. 

f. 𝑆: 𝑧 = 4 − 𝑥2 − 𝑦2, 𝑧 ≥ 0, 𝜌(𝑥, 𝑦) = 𝑥2𝑦2 
g. 𝑆: 𝑧 = 𝑥2 − 𝑦2, 𝑖𝑛𝑠𝑖𝑑𝑒 𝑥2 + 𝑦2 = 9, 𝑦 ≥ 0, 𝜌(𝑥, 𝑦) = 𝑦 
h. 𝑆: 𝑧 = 3𝑥 + 4𝑦 − 12, 𝑓𝑖𝑟𝑠𝑡 𝑜𝑐𝑡𝑎𝑛𝑡, 𝜌(𝑥, 𝑦) = 𝑥 + 𝑦 

 
 

4. Mass of a volume. 
i. Rectangular Coordinates 

To find the mass of a volume in rectangular coordinates, we will need to integrate the 
density function over the volume. 
 
Example 5.  Find the mass of the volume bounded by the plane 𝑧 = 12 − 4𝑥 − 2𝑦 and 
the coordinate planes, with density 𝜌(𝑥, 𝑦, 𝑧) = 𝑥𝑦𝑧. 
 

Integrate ∫ ∫ ∫ 𝑥𝑦𝑧
12−4𝑥−2𝑦

0
𝑑𝑧𝑑𝑦𝑑𝑥

6−2𝑥

0

3

0
, where the boundaries of the integral are the 

boundaries of the region (the plane 𝑧 = 0 𝑎𝑛𝑑 𝑧 = 12 − 4𝑥 − 2𝑦 are the limits for 𝑧, 
then set 𝑧 = 0, and solve for 𝑦 to find the limits of 𝑦 to be 𝑦 = 0 𝑎𝑛𝑑 𝑦 = 6 − 2𝑥, and 
finally, set both 𝑧 = 0, 𝑦 = 0 to find the limit for 𝑥). 
 
Integrating this we get: 
 

∫ ∫
1

2
𝑥𝑦𝑧2|0

12−4𝑥−2𝑦
𝑑𝑦𝑑𝑥

6−2𝑥

0

3

0

 

=
1

2
∫ ∫ 𝑥𝑦(16𝑥2 + 16𝑥𝑦 − 96𝑥 + 4𝑦2 − 48𝑦 + 144)𝑑𝑦𝑑𝑥

6−2𝑥

0

3

0

 

= ∫ ∫ 8𝑥3𝑦 + 8𝑥2𝑦2 − 48𝑥2𝑦 + 2𝑥𝑦3 − 24𝑥𝑦2 + 72𝑥𝑦𝑑𝑦𝑑𝑥
6−2𝑥

0

3

0

 

= ∫ 2𝑥3𝑦2 +
8

3
𝑥2𝑦3 − 24𝑥2𝑦2 +

1

2
𝑥𝑦4 − 8𝑥𝑦3 + 36𝑥𝑦2|

0

6−2𝑥

𝑑𝑥
3

0

 

= ∫ −
8

3
𝑥5 + 32𝑥4 + 144𝑥3 − 288𝑥2 + 216𝑥𝑑𝑥

3

0

 

= −
4

9
𝑥6 +

32

5
𝑥5 + 36𝑥4 − 96𝑥3 + 108𝑥2|

0

3

=
324

5
 

 
ii. Cylindrical Coordinates 

Your region may begin in cylindrical coordinates, or it may be converted there for easier 
integrating. 
 
Example 6. Find the mass of the volume bound by the 𝑥𝑦-plane and the surface 𝑧 =

16 − 𝑥2 − 𝑦2, with the density given by 𝜌(𝑥, 𝑦, 𝑧) = √𝑥2 + 𝑦2. 
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Since the region of intersection with the plane 𝑧 = 0 is a circle, we will convert to 
cylindrical coordinates, with 𝑧 = 16 − 𝑟2 and 𝜌 = 𝑟.   
 

∫ ∫ ∫ 𝑟 ∙ 𝑟𝑑𝑧𝑑𝑟𝑑𝜃
16−𝑟2

0

4

0

2𝜋

0

= ∫ ∫ ∫ 𝑟2𝑑𝑧𝑑𝑟𝑑𝜃
16−𝑟2

0

4

0

2𝜋

0

= 

∫ ∫ 𝑟2𝑧|0
16−𝑟2

𝑑𝑟𝑑𝜃
4

0

2𝜋

0

= ∫ ∫ 16𝑟2 − 𝑟4𝑑𝑟𝑑𝜃
4

0

2𝜋

0

= 

∫
16

3
𝑟3 −

1

5
𝑟5|

2𝜋

0 0

4

𝑑𝜃 = ∫
2048

15
𝑑𝜃

2𝜋

0

=
4096

15
𝜋 

 
iii. Spherical Coordinates 

The thing to be careful about in spherical is that 𝜌 is used for both density (function), 
and the distance from the origin (variable).  Try not to confuse the two. 
 
Example 7. Find the total mass of the sphere 𝜌 = 3, in the first octant, with density 
𝜌(𝜌, 𝜙, 𝜃) = 𝜌 cos 𝜙. 
 

∫ ∫ ∫ 𝜌 cos 𝜙 ∙ 𝜌2 sin 𝜙 𝑑𝜌𝑑𝜃𝑑𝜙
3

0

𝜋
2

0

𝜋
2

0

= ∫ ∫ ∫ 𝜌3 cos 𝜙 sin 𝜙 𝑑𝜌𝑑𝜃𝑑𝜙
3

0

𝜋
2

0

𝜋
2

0

 

= ∫ ∫
1

4
𝜌4 cos 𝜙 sin 𝜙|

0

3𝜋/2

0

𝑑𝜃𝑑𝜙
𝜋/2

0

= ∫ ∫
81

4

𝜋/2

0

cos 𝜙 sin 𝜙 𝑑𝜃𝑑𝜙
𝜋/2

0

 

= ∫
81𝜋

2
cos 𝜙 sin 𝜙 𝑑𝜙

𝜋/2

0

=
81𝜋

4
sin2 𝜙|0

𝜋/2
=

81𝜋

4
 

 
Practice Problems. 
Find the mass over the indicated region with the given density. 

i. The rectangular solid with a vertex at the origin and another at (3,4,7), with density 𝜌(𝑥, 𝑦, 𝑧) =
𝑥2𝑧. 

j. The cone 𝑧 = √𝑥2 + 𝑦2 bounded by the hemisphere 𝑧 = √25 − 𝑥2 − 𝑦2, with density 
𝜌(𝑥, 𝑦, 𝑧) = 𝑦2. 

k. The tetrahedron bounded by the coordinate planes and 3𝑥 + 2𝑦 + 6𝑧 = 6 with density 
𝜌(𝑥, 𝑦, 𝑧) = 𝑦𝑧. 

l. The cylinder bounded in the 𝑥𝑦-plane by one petal of 𝑟 = 4cos (2𝜃), and by 𝑧 = 0, 𝑎𝑛𝑑 𝑧 = 4 −
2𝑥, with density 𝜌(𝑟, 𝜃, 𝑧) = 𝑟. 

 
 

5. Center of mass. 
The calculate the center of mass, we need to set up two-three additional equations (one per 
dimension) to find the coordinates of the center.  These equations are called the moments, and 
in each case, we will need to divide by the total mass we calculated before to obtain the 
coordinates. 
 
The equations below exist in rectangular coordinates, and output coordinates in rectangular 
coordinates.  If we need to integrate in spherical or cylindrical, we do not have the 
corresponding formulas in cylindrical or spherical.  We can convert the equations we have to 
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obtain values in rectangular, and if needed, then convert the coordinates we obtain to 
cylindrical or spherical. 
 

i. Center of Mass in the Plane. 
When calculating the center of mass of the plane, we have two equations (note that the 
notation can be a little confusing). 

 

Moment of mass around the x-axis:  𝑀𝑥 = ∫ ∫ 𝑦𝜌(𝑥, 𝑦)
𝑔(𝑥)

𝑓(𝑥)
𝑑𝑦𝑑𝑥

𝑏

𝑎
 

Moment of mass around the y-axis: 𝑀𝑦 = ∫ ∫ 𝑥𝜌(𝑥, 𝑦)
𝑔(𝑥)

𝑓(𝑥)
𝑑𝑦𝑑𝑥

𝑏

𝑎
  

 

The center of mass is given by (
𝑀𝑦

𝑀
,

𝑀𝑥

𝑀
), where 𝑀 is the total mass.  Note that the 

subscripts may be opposite what you would expect.  The moment from the 𝑥-axis is the 
𝑦-coordinate direction, and the moment from the 𝑦-axis is the 𝑥-coordinate direction. 

 
The limits of integrate of our moment integrals are the same as we used for the total 
mass.  Only the function we are integrating has changed. 
 
Example 8. Find the center of mass for the region in Example 2. 
In Example 2, we found the total mass to be  

𝑀 = ∫ ∫ 𝑘𝑦𝑑𝑦𝑑𝑥
4

𝑥2

2

−2

=
128𝑘

5
 

The moments of mass are: 

𝑀𝑥 = ∫ ∫ 𝑦 ∙ 𝑘𝑦𝑑𝑦𝑑𝑥
4

𝑥2

2

−2

= ∫ ∫ 𝑘𝑦2𝑑𝑦𝑑𝑥
4

𝑥2

2

−2

=
512𝑘

7
 

𝑀𝑦 = ∫ ∫ 𝑥 ∙ 𝑘𝑦𝑑𝑦𝑑𝑥
4

𝑥2

2

−2

= ∫ ∫ 𝑘𝑥𝑦𝑑𝑦𝑑𝑥
4

𝑥2

2

−2

= 0 

 

The center of mass is therefore (
0

128𝑘

5

,
512𝑘

7
128𝑘

5

) = (0,
20

7
).  Notice that constant multipliers 

like 𝑘 will cancel out, so you can ignore those since they don’t affect the outcome. 
 
Note that we obtained zero for one of the coordinates.  While zero for a mass would be 
problematic, zero as a moment is fine when the region spans that coordinate.  In this 
case, the region is symmetric, and the mass is changing according to 𝑦 alone, so it’s to 
be expected that the geometric center of the region, 𝑥 = 0 would be the center of 
mass.  As for the 𝑦-coordinate, the center of mass is above the center of the region (the 
geometric center is 𝑦 = 2, and this also makes sense since the density is greater for 
larger values of 𝑦, that would naturally pull the center of mass in the direction of greater 
density. 
 
Example 9. Set up the integrals to compute the center of mass for Example 3. 
The total mass we obtained above is: 

𝑀 = ∫ ∫ 𝑘𝑟 ∙ 𝑟𝑑𝑟𝑑𝜃
3 cos(2𝜃)

0

𝜋
4

−
𝜋
4

= 6𝑘 
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To find the moments of mass, since this function is in polar coordinates, we must 
convert the 𝑥 and 𝑦 we multiply inside the integral into polar also. 
 

𝑀𝑥 = ∫ ∫ 𝑦 ∙ 𝑘𝑟 ∙ 𝑟𝑑𝑟𝑑𝜃
3 cos(2𝜃)

0

𝜋
4

−
𝜋
4

= ∫ ∫ 𝑟 sin 𝜃 ∙ 𝑘𝑟 ∙ 𝑟𝑑𝑟𝑑𝜃
3 cos(2𝜃)

0

𝜋
4

−
𝜋
4

= ∫ ∫ 𝑘𝑟3 sin 𝜃 𝑑𝑟𝑑𝜃
3 cos(2𝜃)

0

𝜋
4

−
𝜋
4

 

𝑀𝑦 = ∫ ∫ 𝑥 ∙ 𝑘𝑟 ∙ 𝑟𝑑𝑟𝑑𝜃
3 cos(2𝜃)

0

𝜋
4

−
𝜋
4

= ∫ ∫ 𝑟 cos 𝜃 ∙ 𝑘𝑟 ∙ 𝑟𝑑𝑟𝑑𝜃
3 cos(2𝜃)

0

𝜋
4

−
𝜋
4

= ∫ ∫ 𝑘𝑟3 cos 𝜃 𝑑𝑟𝑑𝜃
3 cos(2𝜃)

0

𝜋
4

−
𝜋
4

 

 
These integrals produce coordinates in rectangular coordinates.  There are no 
corresponding integrals in polar like 𝑀𝑟 or 𝑀𝑡ℎ𝑒𝑡𝑎. 

 
Practice Problems. 
Find the center of mass of the lamina with the given boundaries and density function. 

m. 𝜌(𝑥, 𝑦) = 𝑘𝑥𝑦, 𝑦 = 𝑥3, 𝑦 = √𝑥, 𝑥 > 0 
n. 𝜌(𝑟, 𝜃) = 𝑘𝜃, 𝑟 = 4 sin 𝜃  

o. 𝜌(𝑥, 𝑦) = 𝑘𝑥2, 𝑦 = √1 − 𝑥2, 𝑦 = √4 − 𝑥2, 𝑦 > 0 
 

 
i. Center of Mass of a Volume. 

Three moments are needed to calculate the center of mass of a volume.  As before, they 
are only in rectangular coordinates, and they mark moments from the coordinate 
planes. 
 

Moment of mass from the 𝑥𝑦-plane:  𝑀𝑥𝑦 = ∫ ∫ ∫ 𝑧𝜌(𝑥, 𝑦, 𝑧)𝑑𝑧
𝑞(𝑥,𝑦)

𝑝(𝑥,𝑦)
𝑑𝑦

𝑔(𝑥)

𝑓(𝑥)
𝑑𝑥

𝑏

𝑎
 

Moment of mass from the 𝑦𝑧-plane:  𝑀𝑦𝑧 = ∫ ∫ ∫ 𝑥𝜌(𝑥, 𝑦, 𝑧)𝑑𝑧
𝑞(𝑥,𝑦)

𝑝(𝑥,𝑦)
𝑑𝑦

𝑔(𝑥)

𝑓(𝑥)
𝑑𝑥

𝑏

𝑎
 

Moment of mass from the 𝑥𝑧-plane:  𝑀𝑥𝑧 = ∫ ∫ ∫ 𝑦𝜌(𝑥, 𝑦, 𝑧)𝑑𝑧
𝑞(𝑥,𝑦)

𝑝(𝑥,𝑦)
𝑑𝑦

𝑔(𝑥)

𝑓(𝑥)
𝑑𝑥

𝑏

𝑎
 

 

The center of mass is given by (
𝑀𝑦𝑧

𝑀
,

𝑀𝑥𝑧

𝑀
,

𝑀𝑥𝑦

𝑀
), where 𝑀 is the total mass.  I find it 

helpful to remember which integral goes with which coordinate by looking at the 
integral itself.  The variable the moment belongs to is the same as the variable 
multiplied by the density.  As with the 2D case, the limits of integration match what you 
did with the total mass. 
 
Example 10. Set up the integrals to find the center of mass from Example 5. 
 
The total mass integral was:  
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𝑀 = ∫ ∫ ∫ 𝑥𝑦𝑧
12−4𝑥−2𝑦

0

𝑑𝑧𝑑𝑦𝑑𝑥
6−2𝑥

0

3

0

 

 
Our moments of mass are, therefore: 
 

𝑀𝑥𝑦 = ∫ ∫ ∫ 𝑧 ∙ 𝑥𝑦𝑧
12−4𝑥−2𝑦

0

𝑑𝑧𝑑𝑦𝑑𝑥
6−2𝑥

0

3

0

= ∫ ∫ ∫ 𝑥𝑦𝑧2
12−4𝑥−2𝑦

0

𝑑𝑧𝑑𝑦𝑑𝑥
6−2𝑥

0

3

0

 

𝑀𝑥𝑧 = ∫ ∫ ∫ 𝑦 ∙ 𝑥𝑦𝑧
12−4𝑥−2𝑦

0

𝑑𝑧𝑑𝑦𝑑𝑥
6−2𝑥

0

3

0

= ∫ ∫ ∫ 𝑥𝑦2𝑧
12−4𝑥−2𝑦

0

𝑑𝑧𝑑𝑦𝑑𝑥
6−2𝑥

0

3

0

 

𝑀𝑦𝑧 = ∫ ∫ ∫ 𝑥 ∙ 𝑥𝑦𝑧
12−4𝑥−2𝑦

0

𝑑𝑧𝑑𝑦𝑑𝑥
6−2𝑥

0

3

0

= ∫ ∫ ∫ 𝑥2𝑦𝑧
12−4𝑥−2𝑦

0

𝑑𝑧𝑑𝑦𝑑𝑥
6−2𝑥

0

3

0

 

 
 
Example 11. Set up the center of mass integrals for the region in Example 6. 
Our mass integral was: 

𝑀 = ∫ ∫ ∫ 𝑟2𝑑𝑧𝑑𝑟𝑑𝜃
16−𝑟2

0

4

0

2𝜋

0

 

 
Recall that we are still producing coordinates in rectangular coordinates, but since we 
integrating in cylindrical, we replace 𝑥 = 𝑟 cos 𝜃, and 𝑦 = 𝑟 sin 𝜃.  Only the 𝑧-coordinate 
remains unchanged. 
 

𝑀𝑥𝑦 = ∫ ∫ ∫ 𝑧 ∙ 𝑟2𝑑𝑧𝑑𝑟𝑑𝜃
16−𝑟2

0

4

0

2𝜋

0

 

𝑀𝑥𝑧 = ∫ ∫ ∫ 𝑦 ∙ 𝑟2𝑑𝑧𝑑𝑟𝑑𝜃
16−𝑟2

0

4

0

2𝜋

0

= ∫ ∫ ∫ 𝑟 sin 𝜃 ∙ 𝑟2𝑑𝑧𝑑𝑟𝑑𝜃
16−𝑟2

0

4

0

2𝜋

0

= ∫ ∫ ∫ 𝑟3 sin 𝜃 𝑑𝑧𝑑𝑟𝑑𝜃
16−𝑟2

0

4

0

2𝜋

0

 

𝑀𝑦𝑧 = ∫ ∫ ∫ 𝑥 ∙ 𝑟2𝑑𝑧𝑑𝑟𝑑𝜃
16−𝑟2

0

4

0

2𝜋

0

= ∫ ∫ ∫ 𝑟 cos 𝜃 ∙ 𝑟2𝑑𝑧𝑑𝑟𝑑𝜃
16−𝑟2

0

4

0

2𝜋

0

= ∫ ∫ ∫ 𝑟3 cos 𝜃 𝑑𝑧𝑑𝑟𝑑𝜃
16−𝑟2

0

4

0

2𝜋

0

 

 
 
Example 12.  Set up the center of mass integrals for the region in Example 7. 
Our mass integral was: 
 

𝑀 = ∫ ∫ ∫ 𝜌3 cos 𝜙 sin 𝜙 𝑑𝜌𝑑𝜃𝑑𝜙
3

0

𝜋
2

0

𝜋
2

0

 

 
As with cylindrical, we use the same moment integrals, replacing 𝑥 = 𝜌 cos 𝜃 sin 𝜙 , 𝑦 =
𝜌 sin 𝜃 sin 𝜙 , 𝑧 = 𝜌 cos 𝜙. 
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𝑀𝑥𝑦 = ∫ ∫ ∫ 𝑧 ∙ 𝜌3 cos 𝜙 sin 𝜙 𝑑𝜌𝑑𝜃𝑑𝜙
3

0

𝜋
2

0

𝜋
2

0

= ∫ ∫ ∫ 𝜌 cos 𝜙 ∙ 𝜌3 cos 𝜙 sin 𝜙 𝑑𝜌𝑑𝜃𝑑𝜙
3

0

𝜋
2

0

𝜋
2

0

= ∫ ∫ ∫ 𝜌4 cos2 𝜙 sin 𝜙 𝑑𝜌𝑑𝜃𝑑𝜙
3

0

𝜋
2

0

𝜋
2

0

 

𝑀𝑥𝑧 = ∫ ∫ ∫ 𝑦 ∙ 𝜌3 cos 𝜙 sin 𝜙 𝑑𝜌𝑑𝜃𝑑𝜙
3

0

𝜋
2

0

𝜋
2

0

= ∫ ∫ ∫ 𝜌 sin 𝜃 sin 𝜙 ∙ 𝜌3 cos 𝜙 sin 𝜙 𝑑𝜌𝑑𝜃𝑑𝜙
3

0

𝜋
2

0

𝜋
2

0

= ∫ ∫ ∫ 𝜌4 cos 𝜙 sin2 𝜙 sin 𝜃 𝑑𝜌𝑑𝜃𝑑𝜙
3

0

𝜋
2

0

𝜋
2

0

 

 

𝑀𝑦𝑧 = ∫ ∫ ∫ 𝑥 ∙ 𝜌3 cos 𝜙 sin 𝜙 𝑑𝜌𝑑𝜃𝑑𝜙
3

0

𝜋
2

0

𝜋
2

0

= ∫ ∫ ∫ 𝜌 𝑐𝑜𝑠𝜃 sin 𝜙 ∙ 𝜌3 cos 𝜙 sin 𝜙 𝑑𝜌𝑑𝜃𝑑𝜙
3

0

𝜋
2

0

𝜋
2

0

= ∫ ∫ ∫ 𝜌4 cos 𝜙 sin2 𝜙 cos 𝜃 𝑑𝜌𝑑𝜃𝑑𝜙
3

0

𝜋
2

0

𝜋
2

0

 

 
 
Practice Problems. 
Find the center of mass for the indicated region with the given density.  

p. The rectangular solid with a vertex at the origin and another at (3,4,7), with density 𝜌(𝑥, 𝑦, 𝑧) =
𝑥2𝑧. 

q. The cone 𝑧 = √𝑥2 + 𝑦2 bounded by the hemisphere 𝑧 = √25 − 𝑥2 − 𝑦2, with density 
𝜌(𝑥, 𝑦, 𝑧) = 𝑦2. 

r. The tetrahedron bounded by the coordinate planes and 3𝑥 + 2𝑦 + 6𝑧 = 6 with density 
𝜌(𝑥, 𝑦, 𝑧) = 𝑦𝑧. 

s. The cylinder bounded in the 𝑥𝑦-plane by one petal of 𝑟 = 4cos (2𝜃), and by 𝑧 = 0, 𝑎𝑛𝑑 𝑧 = 4 −
2𝑥, with density 𝜌(𝑟, 𝜃, 𝑧) = 𝑟. 

 
 
 


