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  Notation 
 

 
Multivariable calculus uses 2 special characters, both based on the Greek letter 

delta:   and  .  You can think of the former like the “uppercase” and the latter as 

the “lowercase” versions of the same character, and both are pronounced “del”.     

is used in partial derivatives: 
z

x




 vs. 

dz

dx
 to indicate the former is a partial 

derivative where the second one is not. 

 

The   notation is considerably more complicated as an operator and it is used in 

several different ways.  We’ll go through each of these, one at a time, and look at 

what happens when we apply   in coordinate systems other than rectangular 

coordinates.    is a vector and so often you will see it written as  . 

 
1. The Gradient 

 

The   notation is first encountered in calculating the gradient of a function. 

 

  is short for a vector whose components are the operators for taking derivatives: 

, ,
x y z

  

  
.  These are the partial derivative operators for each variable.  In the 

gradient, this vector is used like a vector multiplied by a scalar.  Consider the 
vector , ,x y z   multiplied by the constant a:  , , , ,x y z a xa ya za  =  .  Similarly, 

, , , ,
f f f

f f
x y z x y z

     
 = =

     
.  The resulting vector, therefore, is a vector whose 

components are the partial derivatives of the function.1 

 

f  is also sometimes written as just grad f . 

 
Let’s look at a specific example. 

 

Example 1.  Find f  for 
2 2( , , ) 3 2f x y z x y z= + . 

 

2, , 6 ,4 ,2
f f f

f x yz y
x y z

  
 = =

  
 

 
f  takes a function and turns it into a vector.  Make sure that’s what you get. 

                                                           
1 Note: we multiplied on the right in our example, even though it’s non-standard for most 

vectors and constants because the order matters when working with operators, and this 

made the analogy a little less opaque. 
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What happens, though, if our function is in cylindrical (polar) or spherical 
coordinates? 

 
What we can’t do is work in rectangular, because not only must our coordinate 

values change, but the coordinates themselves change relationships to each other.  
I won’t derive the gradient vector here, but I will give you the resulting formulas 
below.  Our goal will be to apply them correctly. 

 

In cylindrical coordinates:   
1

, ,
r r z

  
 = 

  
 

In spherical coordinates:   
1 1

, ,
sin     

  
 =  

  
 

 
Let’s see how different this makes things look by converting our function from 
example 1 into cylindrical and spherical coordinates and seeing what the gradient 

looks like.  It should be noted that this is isn’t going to be a pretty function in either 
system and so the gradient will be messy.  In practice, you’ll be applying these to 

functions that are simpler in cylindrical or spherical than in rectangular. 
 

Example 2. Find f  for 
2 2( , , ) 3 2f x y z x y z= +  in cylindrical and spherical 

coordinates. 

 
2 2

2 2 2 2

2 2 2 3 2 2

( , , ) 3 2

( , , ) 3 cos 2 sin

( , , ) 3 sin cos 2 sin sin cos

f x y z x y z

f r z r r z

f

  

         

= +

= +

= +

 

 
In cylindrical then: 

2 2

2 2

2 2

2 2 2 2

6 cos 4 sin

1 1
6 cos sin 4 sin cos 6 cos sin 4 sin cos

2 sin

6 cos 4 sin , 6 cos sin 4 sin cos ,2 sincylindrical

f
r rz

r

f
r r z r rz

r r

f
r

z

f r rz r rz r

 

       




      


= +



 
 = − + = − +   


=



 = + − +

 

 
Only the z coordinate in this example is what you’d expect from simply converting 

the rectangular gradient because the z direction is the only one that didn’t change. 
 
In spherical: 
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2 2 2 2 2

2 2 3 2 3 2 2

2 2 2 2 2 3 2

2 2

6 sin cos 6 sin sin cos

1 1
6 sin cos cos 4 sin cos sin cos 2 sin sin sin

6 sin cos cos 4 sin cos sin cos 2 sin sin

1 1
6 sin cos sin

sin sin

f

f

f

      


            
  

           

  
    


= +



 
 = + −    

= + −

 
= −  

3 2

2

2 2 2 2 2

2 2 2 2 2 3 2

2

4 sin cos sin cos

6 sin cos sin 4 sin cos sin cos

6 sin cos 6 sin sin cos

6 sin cos cos 4 sin cos sin cos 2 sin sin

6 sin cos sin 4 sin cos sin cos

sphericalf

     

        

      

           

        

 + 

= − +

+

 = + −

− +

 

 
Note the product rule that was necessary for the derivative with respect to φ, and I 
wrote the final result in vertical form because it’s so long, it runs right off the side 

of the page if written horizontally. 
 

There are certain fields, particularly in physics, where you will work almost 
exclusively in cylindrical or spherical coordinates because that’s where the 
equations are simplest.  The practice problems below contain functions in each of 

the three major coordinate systems for you to practice on.  Apply the correct 
gradient formula to each problem.  You should not need to convert systems for any 

problem. 
 
Practice Problems. 

a. Find the gradient, f , for each function in the appropriate gradient formula. 

1. 2 2 2( , , )f x y z xy x z yz= + +  

2. ( , , ) cosf x y z xy z=  

3. ( , , ) xyf x y z ze=  

4. ( , , ) tan( ) tan( ) 1f x y z x y yz= + + −  

5. 2 2( , , ) ln 8f x y z x y y z z= + + −  

6. 2 2( , , ) 25 5 5f x y z x y= − −  

7. 
2 2 2

1
( , , )

1
f x y z

x y z
=

− − −
 

8. ( , , ) csc cotf r z r  =  

9. 2 2( , , ) cos 2 1f r z r z = + +  

10. 2 2( , , ) cosf r z r z = −  

11. 3 6
( , , )

1 cos
f r z r z

r



= −

−
 

12. ( , , )f r z re z = +  
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13. ( , , ) 4 cosf     =  

14. ( , , ) 3 csc secf      =  

15. 2( , , ) 2 cosf      = −  

16. 2 2( , , ) sin 2 tanf       = +  

 

This handout is about the “how-to”.  Applications will be dealt with elsewhere. 
 

2. The Curl 
 

The   is used in finding the curl of a vector as well.  Here we write it as F , or 

sometimes you’ll just see curl F .  Since   is a vector and here F  is also, we 

calculate the curl the same way we do a cross product.  Recall that for a vector 

, ,u a b c=  and , ,v x y z= , then u v  is given by the determinant of the matrix 

( ) ( ) ( )

i j k

a b c bz cy i az cx j ay bx k

x y z

= − − − + − . 

 

Similarly, for F , where , ,F M N P= , we have 

i j k

P N P M N M
i j k

x y z y z x z x y

M N P

            
= − − − + −    

            
. 

 

The result is another vector.  For rectangular coordinates, this method is probably 
better than memorizing the formula that results.  For cylindrical and spherical 
coordinates, if there is a nice way of memorizing the formulas for the curl, I don’t 

know what it is. 
 

In cylindrical, F  where , ,F M N P=  (whose coordinates are (r,θ,z) 

coordinates), we get  
1 1

, ,
P N M P M

rN
r z z r r r 

          
 − −  −     
          

. 

 

In spherical, F  where , ,F M N P=  (whose coordinates are (ρ,φ,θ) coordinates) 

we get      
1 1 1 1

sin , ,
sin sin

P M M
N N P  

          

          
−  −  −     

          
. 

 

Example 3.  ( , , ) , ,F x y z xy yz xz= .  Find the curl. 
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( ) ( ) ( )0 0 0 , ,

i j k

F y i z j x k y z x
x y z

xy yz xz

  
 = = − − − + − = − − −

  
 

 

Example 4.  Find F  for 2( , , ) sin , cos ,sin cosF         = . 

Before we take the derivative in the first coordinate we need to multiply the N 

function by sinφ: sin ( cos ) sin cos     = , and then take the derivative of that 

with respect to φ cos cos   .  And we also need (sin cos ) sin sin   



= −


.  Put 

these together to complete the first coordinate: 

 
1 sin

cos cos sin sin cot cos
sin


      

  
+ = +  

 

The second coordinate needs ( ) 2cos cos    =  and the derivative with respect to 

ρ of that 2 cos  .  We also need 2 sin 0 



  = 

.  Therefore, our second 

coordinate, if we put this all together is  
1

0 2 cos 2cos  


− = − . 

 

For the third coordinate, we need ( )sin cos    and the derivative of this with 

respect to ρ sin cos  , and we also need 
2 2sin cos   




  = 

.  Putting these 

together we get 
21 1

sin cos cos sin cos cos       
 
 − = −  . 

 
Put these three components together to get the curl: 

sin 1
cot cos , 2cos , sin cos cosF


      

 
 = + − − . 

 
 

Practice Problems. 
b. For each of the following functions, calculate the curl in the appropriate 

coordinate system. 

17. 2 2( , , ) , ,F x y z xyz x y yz=  

18. ( , , ) cos ,sin , tanF x y z xy xz y=  

19. 
2 2 2 2

( , , ) , , arcsin
1 1

yz xz
F x y z xy

x y x y
=

− −
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20. 
1 1

( , ) , ,0F x y
x y

=  

21. 2( , , ) sin , sec ,F r z r r z  =  

22. ( , , ) tan ,arctan ,F r z z r =  

23. ( , , ) ln , cos , tanF r z r r z z =  

24. ( , , ) sin cos , sin sin , cosF           =  

25. 3 2 2( , , ) , sin , cosF        =  

26. ( )2 31
( , , ) , sin , lnF      


=  

 
 

3. The Divergence 

 

The third major application of the   notation is to calculate the divergence of a 

vector field.  The divergence itself is a function and not a vector.  What operation 

turns a vector into a number?  The dot product.  So the divergence is given by F  

or sometimes just div F .  For , ,F M N P= , this gives 

, , , ,
M N P

M N P
x y z x y z

     
 = + +

     
.   

 

Of course, nothing is quite so simple in cylindrical or spherical coordinates are given 
below, respectively. 

 

 

 2

2

1 1

1 1 1
sin

sin sin

N P
F rM

r r r z

P
F M N

r



 
      

  
  =  +  +

  

  
   =  +   +   

 

 
Not pretty, but not as bad as the curl formulas. 

 
 

Example 5.  Find the divergence of 2( , , ) ,cos ,F x y z yz xy x y= . 

0 ( sin ) 0 sinF xy x x xy = + −  + = −  

 

 

Example 6. Find the divergence of 2 2( , , ) sin , , cosF        = . 
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2 2 2

2

4 2

2

2
3 2

2

1 1 1
sin sin cos

sin sin

1 1 1
sin sin cos

sin sin

1 1 1 cot sin
4 sin cos sin 4 sin

sin sin sin

F
r

r

      
      

     
      

   
       

       

  
     =   +   +     

  
   =  +   +     

   = +  + − = + −   

 

 
 

Practice Problems. 
c. Find the divergence of each vector function in the appropriate coordinate 

system. 

27. 2 2( , , ) , ,F x y z xyz x y yz=  

28. ( , , ) cos ,sin , tanF x y z xy xz y=  

29. 
2 2 2 2

( , , ) , , arcsin
1 1

yz xz
F x y z xy

x y x y
=

− −
 

30. 
1 1

( , ) , ,0F x y
x y

=  

31. 2( , , ) sin , sec ,F r z r r z  =  

32. ( , , ) tan ,arctan ,F r z z r =  

33. ( , , ) ln , cos , tanF r z r r z z =  

34. ( , , ) sin cos , sin sin , cosF           =  

35. 3 2 2( , , ) , sin , cosF        =  

36. ( )2 31
( , , ) , sin , lnF      


=  

 
When dealing with vectors, we can also combine the cross product and the dot 

product into the triple scalar product.  However, the divergence of the curl is always 

zero.  In   notation, ( ) 0F  = . 

 
4. The Laplacian 

 

There is a fourth way to use   notation, which is to dot the   with a gradient 

vector: ( )f  , or more compactly written 
2 f .  Just as with our other use of the 

dot product, it produces a function, here, the sum of the second derivatives. 
 

2 2 2
2

2 2 2
, , , ,

f f f f f f
f f

x y z x y z x y z

        
 = =  = + +

        
. 
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This is called the Laplacian. 
 

In cylindrical we have 
 

2 2
2

2 2 2

1 1f f f
f r

r r r r z

    
 =  +  +     

. 

 

And in spherical we have 
 

2
2 2

2 2 2 2 2

1 1 1
sin

sin sin

f f f
f  

         

       
 =  +   +    

       
. 

 
 

Example 7. Find the Laplacian of 
2 2( , , ) 3 2f x y z x y z= + . 

 

2 2(6 ) (4 ) (2 ) 6 4 0 6 4f x yz y z z
x y z

  
 = + + = + + = +

  
 

 

Example 8. Find the Laplacian of 
2( , , ) cos sinf      = . 

 

 

( )

( )
( )

3 2

2 2 2 2 2

2 2

2 2

2

2

2 cos sin 2 cos sin 6 cos sin 6cos sin

cos cos cos sin cos cos cos sin

cos cos sin
cos cot cos sin

sin

cos cos
sin cos cos cos cos cot csc

sin

6cos

f

f

f

f

          


          


  
   



 
        

 


=   




=   − 



−
= −


= −  −  − = −



 = ( )sin cos cot cos sin cos cot csc        + − −

 

 
 
Practice Problems. 

d. Find the Laplacian of the following functions in the appropriate coordinate 
systems. 

37. 2 2 2( , , )f x y z xy x z yz= + +  

38. ( , , ) cosf x y z xy z=  

39. ( , , ) xyf x y z ze=  

40. ( , , ) tan( ) tan( ) 1f x y z x y yz= + + −  

41. 2 2( , , ) ln 8f x y z x y y z z= + + −  
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42. 2 2( , , ) 25 5 5f x y z x y= − −  

43. 
2 2 2

1
( , , )

1
f x y z

x y z
=

− − −
 

44. ( , , ) csc cotf r z r  =  

45. 2 2( , , ) cos 2 1f r z r z = + +  

46. 2 2( , , ) cosf r z r z = −  

47. 3 6
( , , )

1 cos
f r z r z

r



= −

−
 

48. ( , , )f r z re z = +  

49. ( , , ) 4 cosf     =  

50. ( , , ) 3 csc secf      =  

51. 2( , , ) 2 cosf      = −  

52. 2 2( , , ) sin 2 tanf       = +  

 

Of course, this barely scratches the surface of   notation.  Because it is a 

derivative operator, it has its own set of product rules.  I list them here. 
 

i. ( )fg f g g f =  +   

ii. ( ) ( ) ( ) ( ) ( )A B A B B A A B B A  =   +   +  +   

iii. ( ) ( )f A f A A f =  +   

iv. ( ) ( ) ( )A B B A A B  =   −    

v. ( ) ( ) ( )f A f A A f =  −    

vi. ( ) ( ) ( ) ( ) ( )A B B A A B A B B A  =  −  +  −   

vii. ( ) 0A  =   (this is the “triple scalar product” mentioned above) 

viii. ( ) 0f  =  

ix. ( ) ( ) 2A A A  =  −  

 
 

Practice Problems. 
e. For each of the product rules listed above, verify each rule with the given 

functions.  Verify the rule by completing both sides of the expression and 
show that they are equal. 

53. 
( , , ) , ( , , )

( , , ) , , , ( , , ) , ,

f x y z x y z g x y z xyz

A x y z x y z B x y z y z x

= + + =

= =
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54. 

2( , , ) cos , ( , , ) sin

( , , ) , tan , , ( , , ) , ln ,

f r z r z g r z r z

A r z r z B r z z r e

   

  

= + = +

= =
 

55. 
2

( , , ) cos sin , ( , , ) sin tan

( , , ) , , , ( , , ) , ln ,arctan

f g

A B

           

            

= =

= =
 

 

 
 


