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Limits in 2 or more variables 
 
 
Before beginning limits in multiple variables, it’s a good idea to review limits in one variable.  
Recall that lim ( )

x c
f x L


  is defined by saying that if | |x c    this implies that | ( ) |f x L   .  

In words, this says that if the difference between x and c is small enough (δ) then the value 
of f(x) will be within a small amount (ε) of L.  In evaluating limits, we rarely employ this 
definition in practice, of course.  Instead, we use algebraic properties derived from this 
definition, or equivalent expressions, to evaluate limits.  When our function is already 
continuous, the value f(c) is always the value of L.  But if the function is not continuous, 
maybe we get 0/0 meaning the function is not defined at that point, we use algebraic 
manipulations to simplify the problem so that the expression is defined without the zero in 
the denominator. 
 
Among the techniques we used were: 

 Factoring  
2

22 2 2

5 14 ( 7)( 2) 7 9
lim lim lim

6 ( 2)( 3) 3 5x x x

x x x x x

x x x x x  

    
  

    
 

 Rationalizing denominators 

 
11 1 1

1 ( 1) 1 ( 1) 1
lim lim lim lim 1 0

11 1 1 xx x x

x x x x x
x

xx x x
      

    
    

  
 

 Special limits  
0 0

sin 1 cos 1
lim 1, lim 0, lim 1

x

x x x

x x
e

x x x  

  
    

 
 

 Applying log rules
 

 
1

0

1 20 0 0 0 0 0

ln
lim limln ln lim ln lim lim lim[ ] 0 1x x

x x x x x x

x x
x L x L x x x e L

x x



      
           



 
 L’Hôpital’s Rule  (this was also used in the last example) 

 
 
Many of these techniques can still be employed in multiple variables, but L’Hôpital’s is for 
one variable only (if we want to use it, we will have to reduce the problem to a single 
variable first).  You may wish to go back and review one variable limits more carefully 
because we will assume such techniques and employ them from time to time. 
 
When we start working with multiple variables, our definition of a limit has to change a bit.  

Now 
( , ) ( , )

lim ( , )
x y c d

f x y L


  in the two variable case, is defined by: if 2 2( ) ( )x c y d      this 

implies that | ( , ) |f x y L   .  We can use any metric for the distance between (x,y) and 

(c,d), but the standard Euclidean distance formula is typical.  As before, this just means that 
if (x,y) gets close enough (δ) to (c,d), then the difference between f(x,y) and L will be as 
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small as we like (ε).  This can be readily expanded to any number of variables, for instance, 

( , , ) ( , , )
lim ( , , )

x y z c d e
f x y z L


   is defined as if 2 2 2( ) ( ) ( )x c y d z e        this implies that 

| ( , , ) |f x y z L   .  And so forth.  Such a definition exists in all coordinate systems. 

 
However, proving that a limit exists in multiple variables is considerably more complicated 
than proving it in just one variable.  In the one-variable case, we just need to worry about 
approaching the limit from the right side, and approaching from the left side.  These are easy 
to each exhaustively, even if you have to do it numerically.  When working with more than 
one variable, there are an infinite number of potential paths to a limit.  So, very often, we are 
reduced to proving that a limit does not exist rather than proving that it does.  We just need 
to find one path to the limit that is different than at least one other path.  Finding that 
special path can be tricky, but there are a few things we can look for.  Another strategy is to 
switch coordinate systems.  Our goal will be to reduce the problem to a single variable, and 
possibly to apply algebra techniques that we used in the past.  
 
Let’s consider some examples.  Before doing anything, always consider first if the function is 
continuous.  If it is, just plug in the values.  If it’s not, that’s when things get tricky.  Our 
examples will consider only the non-continuous examples, but don’t overthink the 
continuous ones. 
 

Example 1.  
( , ) (0,2)

sin
lim

x y

y x

x
 

 
One possible trick here is to try separating variables. 

( , ) (0,2) 0 2

sin sin
lim lim lim 1 2 2

x y x y

y x x
y

x x  
      

 
This usually isn’t possible, but when it is, take advantage of it. 
 

Example 2. 
( , ) (0,0)

lim
x y

x y

x y




 

 
Here, let x-y=u, and when (x,y)=(0,0), then u=0 
 

( , ) (0,0) 0 0
lim lim lim 0

x y u u

x y u
u

x y u  


  


 

 
 

Example 3.  
2 2

4 4( , ) (0,0)
lim

3x y

x y

y x 
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This problem won’t reduce nicely, so we will try various “paths” to the origin to see if we can 
get one result different than the others.  Failing to find such a path does not mean that the 
desired path doesn’t exist.  We may not have been creative enough.  Be extremely wary of 
this on exams. 
 
There are a number of standard paths to try. 
 

a) Let x=0 (this path is along the y-axis) 
2

4 4 4(0, ) (0,0) 0

0 0
lim lim 0

3 0 3y y

y

y y 


 


 

b) Let y=0 (this path is along the x-axis) 
2

4 4 4( ,0) (0,0) 0

0 0
lim lim 0

3 0x x

x

x x 


 

 
 

c) Let y=kx (this is any linear path not along the axes, i.e. k≠0) 
2 2 2 4 2 4 2

4 4 4 4 4 4 4 4( , ) (0,0) 0 0

( )
lim lim lim

3( ) 3 (3 1) 3 1x kx x x

x kx k x k x k

kx x k x x x k k  
  

   
 

This last example is not equal zero unless k=0 (but we explicitly excluded that case 
because we dealt with it in (b)).  This means that this limit does not exist. 

 
You must be very careful choosing paths, though.  While we are frequently looking at limits 
at (x,y)=(0,0), it is not universally true.  When evaluating paths, we need to choose paths 
that approach the point we are interested in.  Choosing the path y=0, if we are approaching 
the point (2,1) will not tell us anything (and will be quite wrong!). 
 

Example 4.   
( , ) (3,0)

4 ln(1 )
lim

1x y

x xy

x y

 

 
 

 
a) Let x=3 

(3, ) (3,0) 0

4 3 ln(1 3 ) 12 ln(1 3 ) 12 ln1 12
lim lim 3

1 3 4 4 4y y

y y

y y 

     
   

  
 

b) Let y=0 

( ,0) (3,0) 3

4 ln(1 0) 4 ln1 12
lim lim 3

1 0 1 4x x

x x x

x x 

   
  

  
 

c) Let 3 yx e .  This seems like a crazy path at first, but when 0, 3y x   

0(3 , ) (3,0)

4 3 ln(1 3 ) 12 ln(1 3 ) 12 ln1 12
lim lim 3

1 3 1 3 1 3 0 4y

y y y y

y yye y

e e y e ye

e y e y

      
   

     
 

This looked pretty horrible, but nothing exceptional happened once we plugged in 0. 
d) Let x=y+3 

2

( 3, ) (3,0) 0

4( 3) ln(1 ( 3) ) 4 12 ln( 3 1) 12
lim lim 3

1 3 2 4 4y y y

y y y y y y

y y y  

       
  

   
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So, how can I claim that the limit here is really 3?  Well, we have to consider the continuity of 
the function.  The denominator is undefined only when 1x y   , but that’s not a condition 

satisfied by the point (3,0).  What about the numerator?  4x is continuous everywhere, but 
ln(1+xy) is undefined when xy≤ -1.  Again, that’s not a condition satisfied by our point, so 
both the numerator and denominator are continuous everywhere around the point (3,0) and 
so the limit is indeed just 3. 
 

Example 5. 
2

4 2( , ) (0,0)
lim

x y

x y

x y 
 

 
Start this problem in the usual way. 

a) Let x=0 (along the y-axis) 
2

4 2 2(0, ) (0,0) 0

0 0
lim lim 0

0y y

y

y y 
 


 

b) Let y=0 (along the x-axis) 
2

4 2 4( ,0) (0,0) 0

0 0
lim lim 0

0x x

x

x x 
 


 

c) Let y=kx (along a straight line to the origin, k≠0) 
2 3 3

4 2 4 2 2 2 2 2 2 2 2( , ) (0,0) 0 0 0

0
lim lim lim lim 0

( ) ( )x kx x x x

x kx kx kx kx

x kx x k x x x k x k k   
    

   
 

 
So far so good, but what other path can we try?  We want a path that will simplify the 
denominator.  Here we have x4 and y2 so if we let y=x2, these terms will have the same 
power.  Let’s try that. 
 

d) Let y=kx2 (where k≠0) 

2

2 2 4 4

4 2 2 4 2 4 4 2 20 0( , ) (0,0)
lim lim lim

( ) (1 ) 1x xx kx

x kx kx kx k

x kx x k x x k k 
  

   
 

 
This last result is never equal 0 unless k=0, so we know that the limit does not exist. 
 
For these curved paths, we want the variable to cancel out of the denominator, and don’t be 
afraid to use fractional powers if need be.  Whatever will get the two to be equal.  You can 
try the same trick with the numerator. 
 
Practice Problems. 

1. 2

( , , ) (2,1, 1)
lim 3 cos( )

x y z
x z yx x z 

 
   

2. 
( , ) (3,1)

lim
x y

xy

x y 
 

3. 
2 2( , ) (1,1)

lim
x y

xy

x y 
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4. 
( , ) (1,1)

1
lim

1x y

xy

xy




 

5. 
2

2( , ) (1, 1)
lim

1x y

x y

xy  
 

6. 
( , ) (0,1)

arccos

lim
1x y

x

y

xy

 
 
 


 

7. 
( , ) ( ,2)

4

lim cos
x y

y xy




 

8. 
( , ) (0,0)

1
lim

x y x y 
 

9. 
( , , ) ( 2,1,0)

lim yz

x y z
xe

 
 

10. 
( , ) (2,1)

1
lim

1x y

x y

x y

 

 
 

11. 
2

2 2( , ) (0,0)
lim

(1 )(1 )x y

x

x y  
 

12. 
( , ) (0,0)

lim
x y

x y

x y




 

13. 
( , ) (0,0)

lim 4 1
x y

x y


   

14. 
2 2 2( , , ) (0,0,0)

lim
x y z

xy yz xz

x y z

 

 
 

15. 
2 2

2 2 2( , , ) (0,0,0)
lim

x y z

xy yz xz

x y z

 

 
 

16. 
2 2

2 2( , ) (0,0)

cos( )
lim 1

x y

x y

x y





 

17. 
2 2( , ) (0,0)

lim
x y

xy

x y 
 

18. 
2

2( , ) (0,0)

2
lim

2x y

x y

x y




 

19. 
2 2

2 2( , ) (0,0)
lim

x y

x y

x y




 

20. 
2 2

2 2( , ) (0,0)

sin
lim

x y

x y

x y




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21. 2 2 2 2

( , ) (0,0)
lim ( ) ln( )

x y
x y x y


   

22. 
2 2

( , ) (0,0)
lim

x y

x y

xy


 

23. 
2

3 2( , ) (0,0)
lim

x y

x y

x y 
 

24. 
2 2 2( , , ) (0,0,0)

lim
x y z

xyz

x y z  
 

25. 
2 2 2( , , ) (0,0,0)

1
lim arctan

x y z x y z

 
 

  
 

26. 
2

2 2( , ) (0,1)

1
lim arctan

( 1)x y

x

x y

 
 

  
 

27. 
2 2

4 4( , ) (0,0)
lim

3x y

x y

x y 
 

28. 
3

6 2( , ) (0,0)
lim

x y

x y

x y 
 

29. 
2 2

4 4( , ) (0,0)

4
lim

3x y

x y

x y




 

30. 
2 2( , ) (0,0)

lim
3x y

xy

x y 
 

31. 
2

2 2( , ) (0,0)

2
lim

3 2x y

x y

x y




 

32. 
2 2( , ) (0,0)

lim
3 2x y

xy

x y 
 

33. 
2

4 2( , ) (0,0)
lim

3x y

x y

x y 
 

34. 
3 2

3 2( , ) (0,0)

3
lim

3 2x y

x y

x y

 


 

35. 
2 5

4 10( , ) (0,0)
lim

2 3x y

x y

x y 
 

36. 
3 2

6 4( , ) (0,0)

2
lim

x y

x y

x y 
 

37. 
2

2 2( , ) (0,0)
lim

3 2x y

xy

x y 
 

38. 
3

2 2( , ) (0,0)

3 2
lim

x y

x y

x y




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39. 
4 4

2 2( , ) (0,0)
lim

3x y

x y

x y




 

40. 
2 2

2 4( , ) (0,0)
lim

2 3x y

x y

x y 
 

 
 
Another possible technique to consider is to convert to a different coordinate system.  This 
technique may allow to find non-existence limits more easily.  Not all problems can be solved 
this way, and the technique works best when the degree of terms in the denominator is the 
same, or if terms everywhere have the same degree, or if identities can be applied readily 
without a lot of algebra.  Most importantly, we should be approaching the origin.  While 
converting can we used in theory away from the origin, this method will become 
enormously more complicated. 
 

Example 6.  
2 2( , ) (0,0)

lim
x y

xy

x y 
  (#17 from the practice problems) 

 

Convert this problem to polar coordinates using 2 2 2cos , sin ,x r y r x y r     .  In our 

limit, we allow r to go to zero, but leave θ alone.  If our answer depends on θ, then the limit 
does not exist since different angles will give different values. 
 

2

2 2 2( , ) (0,0) ( , ) (0, )

cos sin
lim lim cos sin

x y r

xy r

x y r 

 
 

 
 


 

 
This limit does not exist. 
 
You can also use this technique in three-variable problems. 
 

Example 7. 
2 2 2( , , ) (0,0,0)

lim
x y z

xyz

x y z  
 (#24 from the practice problems) 

 
If we convert only (x,y) to (r,θ), this is equivalent to using cylindrical coordinates.  This will 
reduce a three-variable problem to the more familiar two-variable problem. 
 

2

2 2 2 2 2( , , ) (0,0,0) ( , , ) (0, ,0)

cos sin
lim lim

x y z r z

xyz r z

x y z r z 

 

 


  
 

 
You can treat θ like a constant for now.  You can see fairly readily that if you approach the 
origin along 0r  , the limit will be 0, and if you approach along the path r z , you also get 
0.   
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2

2 2 2( , , ) (0, , ) 0

3

2( , , ) (0, ,0) 0

cos sin 0
lim lim 0

cos sin cos sin
lim lim 0

2 2

r z z r

z z z

r z

r z z

z z

z

 

 

 

   

 

 

 


 

 

 
It turns out that in this example, the degree of the numerator is one degree higher than the 
degree of the denominator, which is why if you reduce it to a single variable, L’Hôpital’s Rule 
will preserve the variables in the numerator longer than in the denominator, and so the 
function will be 0 here. 
 
But even more clearly in this problem, you can convert instead to spherical using 

2 2 2 2sin cos , sin sin , cos ,x y z x y z              .  And we will let ρ go to 

zero, and leave the other angles alone.  If there is any angle information left at the end when 
we are finished, we will know the limit does not exist. 
 

3 2
2

2 2 2 2( , , ) (0,0,0) ( , , ) (0, , ) 0

sin cos sin cos
lim lim lim sin cos sin cos 0

x y z

xyz

x y z      

    
    

  
  

 
 

 
While this looks like a mess until we get to the end, the limit being truly equal to zero is 
much clearer than when we converted to cylindrical. 
 
Three-variable problems are enormously difficult and tedious if we work them out in 
rectangular coordinates because of the possible paths we have to consider, and there is no 
guarantee that we will get a definitive result.  Most of the three-variable problems we will 
deal with will be either continuous, or will be easily reducible in spherical coordinates (or 
more rarely, cylindrical coordinates). 
 
Practice Problems. 

41. Convert the listed problems into polar or spherical coordinates (for 2- or 3-variable 
problems respectively) and recalculate the limits.  Do your results from before agree? 

a. 
2 2 2( , , ) (0,0,0)

lim
x y z

xy yz xz

x y z

 

 
 (#14, in spherical) 

b. 
2 2

2 2 2( , , ) (0,0,0)
lim

x y z

xy yz xz

x y z

 

 
 (#15, in spherical) 

c. 
2 2

2 2( , ) (0,0)

cos( )
lim 1

x y

x y

x y





 (#16, in polar) 

d. 
2 2

2 2( , ) (0,0)
lim

x y

x y

x y




 (#19, in polar) 

e. 
2 2

2 2( , ) (0,0)

sin
lim

x y

x y

x y




 (#20, in polar) 
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f. 2 2 2 2

( , ) (0,0)
lim ( ) ln( )

x y
x y x y


   (#21, in polar) 

g. 
2 2

( , ) (0,0)
lim

x y

x y

xy


 (#22, in polar) 

h. 
2 2 2( , , ) (0,0,0)

1
lim arctan

x y z x y z

 
 

  
 (#25, in spherical) 

i. 
2 2

4 4( , ) (0,0)
lim

3x y

x y

x y 
 (#27, in polar) 

j. 
2 2

4 4( , ) (0,0)

4
lim

3x y

x y

x y




 (#29, in polar) 

k. 
2 2( , ) (0,0)

lim
3 2x y

xy

x y 
 (#32, in polar) 

l. 
2

2 2( , ) (0,0)
lim

3 2x y

xy

x y 
 (#37, in polar) 

m. 
4 4

2 2( , ) (0,0)
lim

3x y

x y

x y




 (#39, in polar) 

n. 
3

2 2( , ) (0,0)

3 2
lim

x y

x y

x y




 (#38, in polar… tricky!!) 

 
 
 
 


