Integration by Parts

Integration by parts is used when two functions are multiplied together, but which are not related to each other through a chain rule (when substitution is used). Integration by parts is essentially in inverse operation on the product rule when taking derivatives, and that's where we get the formula $\int u dv = uv - \int v du$.

Integration by parts works best when the function we choose as u gets simpler when we take its derivative, and/or the function we choose as dv gets simpler when we integrate it. To ensure that, there is a basic rule of thumb we can use when choosing u (or we can choose dv using the reverse rule).

Choice	u	dv
1st	Logs: $\ln(x)$, $\log_{10}(x)$	Exponential functions: e^x , 2^x , etc.
2nd	Inverse trig functions: $\sin^{-1}(x)$, $\arctan(x)$, etc.	Trig functions: $sin(x)$, $tan(x)$, etc.
3rd	Algebraic functions (positive integer powers)	Algebraic function (negative integer powers)
4th	Algebraic function (other)	Algebraic function (other)
5th	Trig functions: $sin(x)$, $tan(x)$, etc.	*
6th	Exponential functions: e^x , 2^x , etc.	*

* These functions can't be integrated by themselves. Never use inverse trig function or logs as dv.

You can use LIATE to remember the sequence of function for u: Logs, Inverse trig, Algebraic, Trig, Exponential.

Not everything can be integrated by parts. Case in point: $\int \ln(x) \arcsin(x) dx$. Neither of these functions can integrated alone, so neither can be dv.

Let's see some examples.

1. Logs and inverse trig functions by themselves can be integrated by parts. $\int \ln(x) dx$

Choose
$$u = \ln x$$
, $dv = dx$. Find $du = \frac{1}{x}dx$, $v = x$
$$\int \ln(x)dx = x \ln x - \int x \frac{1}{x}dx = x \ln x - \int dx = x \ln x - x + C$$

2. $\int x \arctan(x) dx$

Choose $u = \arctan(x), dv = xdx$. Find $du = \frac{1}{x^2 + 1}dx, v = \frac{1}{2}x^2$ $\int x \arctan(x)dx = \frac{1}{2}x^2 \arctan(x) - \frac{1}{2}\int \frac{x^2}{x^2 + 1}dx$. This new integral requires long division.

$$\frac{1}{2}x^{2}\arctan(x) - \frac{1}{2}\int 1 - \frac{1}{x^{2} + 1}dx = \frac{1}{2}x^{2}\arctan(x) - \frac{1}{2}[x - \arctan(x)] + C$$
$$= \frac{1}{2}[x^{2}\arctan(x) - x + \arctan(x)] + C$$

3. $\int x\sqrt{x+1}dx$

This integral can be done by substitution as well (with $u = \sqrt{x+1}$), but we will do it by parts. Choose $u = x, dv = (x+1)^{\frac{1}{2}} dx$. Find $du = dx, v = \frac{2}{3}(x+1)^{\frac{3}{2}}$ $\int x\sqrt{x+1}dx = \frac{2}{3}x(x+1)^{\frac{3}{2}} - \frac{2}{3}\int (x+1)^{\frac{3}{2}} dx = \frac{2}{3}x(x+1)^{\frac{3}{2}} - \frac{2}{3}\left[\frac{2}{5}(x+1)^{\frac{5}{2}}\right] + C$

 $4. \quad \int \frac{x}{\left(x+3\right)^2} dx$

Choose $u = x, dv = (x+3)^{-2} dx$. Find $du = dx, v = -(x+3)^{-1} = -\frac{1}{x+3}$ $\int \frac{x}{(x+3)^2} dx = -\frac{x}{x+3} + \int \frac{1}{x+3} dx = -\frac{x}{x+3} + \ln(x+3) + C$

 $5. \quad \int x^3 e^{x^2} dx$

Choose $u = x^2$, $dv = xe^{x^2}dx$. We do this because we will need to integrate dv by substitution. The exponential function here will not integrate without the x. Find du = 2xdx, $v = \frac{1}{2}e^{x^2}$. $\int x^3 e^{x^2}dx = \frac{1}{2}x^2e^{x^2} - \int \frac{1}{2}2xe^{x^2}dx = \frac{1}{2}x^2e^{x^2} - \int xe^{x^2}dx = \frac{1}{2}x^2e^{x^2} - \frac{1}{2}e^{x^2} + C$

For some integrals, we will have to use by parts more than once.

6. $\int \sin(x) e^x dx$

Choose $u = \sin(x), dv = e^{x} dx$. Find $du = \cos(x) dx, v = e^{x}$

$$\int \sin(x)e^{x}dx = \sin(x)e^{x} - \int \cos(x)e^{x}dx$$

When you do the next step, be consistent in choosing *u* and *dv*.
Choose $u = \cos(x), dv = e^{x}$. Find $du = -\sin(x)dx, v = e^{x}$
$$\int \sin(x)e^{x}dx = \sin(x)e^{x} - \int \cos(x)e^{x}dx = \sin(x)e^{x} - \left[\cos(x)e^{x} + \int \sin(x)e^{x}dx\right]$$

$$\int \sin(x)e^{x}dx = \sin(x)e^{x} - \cos(x)e^{x} - \int \sin(x)e^{x}dx$$

This is a special kind of integral. We have here the same integral we started with, so in this case add it to the left side to finish solving.

 $2\int \sin(x)e^x dx = \sin(x)e^x - \cos(x)e^x + C$, so our final answer we get from dividing by 2.

$$\int \sin(x)e^{x}dx = \frac{1}{2}\sin(x)e^{x} - \frac{1}{2}\cos(x)e^{x} + C$$

Check your answer by differentiating using the product rule.

7. $\int x^2 e^x dx$

Choose
$$u = x^2$$
, $dv = e^x dx$. Find $du = 2xdx$, $v = e^x$.

$$\int x^2 e^x dx = x^2 e^x - 2 \int x e^x dx$$

For the new integral, choose u = x, $dv = e^x dx$, find du = dx, $v = e^x$. & integrate again. $\int x^2 e^x dx = x^2 e^x - 2 \int x e^x dx = x^2 e^x - 2 \left[x e^x - \int e^x dx \right]$

Apply by parts until you have an integral that can be integrated by substitution or a basic rule. $\int x^2 e^x dx = x^2 e^x - 2xe^x + 2e^x + C$

For very long by parts problems, where we will have to do integration by parts repeatedly, there is the tabular method to generate the terms we need.

8. $\int x^5 e^{2x} dx$

Choose $u = x^5$, $dv = e^{2x} dx$. Then create a table. Differentiate in the u column until you can't any more. And then in the dv column, integrate. In the first column, keep track of the signs.

Sign	u	dv
+	x^5	e^{2x}
	→ 5x ⁴	$\frac{1}{2}e^{2x}$
+	20x ³	$\frac{1}{4}e^{2x}$
	$60x^2$	$\frac{1}{8}e^{2x}$
+	120 <i>x</i>	$\frac{1}{16}e^{2x}$
		$\frac{1}{32}e^{2x}$
+	0	$\frac{1}{64}e^{2x}$

Combine terms following the arrows:

$$\int x^5 e^{2x} dx = \frac{1}{2} x^5 e^{2x} - \frac{5}{4} x^4 e^{2x} + \frac{5}{2} x^3 e^{2x} - \frac{15}{4} x^2 e^{2x} + \frac{15}{4} x e^{2x} - \frac{15}{8} e^{2x} + C$$

9. Some problems defy the general principles, and can only be done by trial and error. Case in re^{2x}

point:
$$\int \frac{xe}{(2x+1)^2} dx$$

You can try choosing according to the LIATE rule, and you will get nowhere. (Try it.) It just gets ugly. But there is a choice that does work: $u = xe^{2x}$, $dv = (2x+1)^{-2} dx$. Our choose for u will have to be differentiated using the product rule. $du = 2xe^{2x} + e^{2x} = e^{2x}(2x+1), v = -\frac{1}{2} \cdot \frac{1}{2x+1}$. Putting these into our formula: $\int \frac{xe^{2x}}{(2x+1)^2} dx = -\frac{xe^{2x}}{2(2x+1)} + \frac{1}{2} \int \frac{2x+1}{2x+1} e^{2x} dx = -\frac{xe^{2x}}{2(2x+1)} + \frac{1}{2} \int e^{2x} dx = -\frac{xe^{2x}}{2(2x+1)} + \frac{1}{4} e^{2x} + C$

Problems.

a. Choose *u* and *dv*. No need to integrate.

i.
$$\int \operatorname{arcsec}(x) dx$$

ii.
$$\int x \ln(x) dx$$

iii.
$$\int x^3 \sin(x^2) dx$$

iv.
$$\int \frac{x}{\sqrt{3x+4}} dx$$

v.
$$\int \cos(x) e^{4x} dx$$

b. Integrate.

vi.
$$\int \frac{x^2}{\sqrt[3]{2x+1}} dx$$

vii.
$$\int x^2 e^{-3x} dx$$

viii.
$$\int x^2 \arcsin(x) dx$$

ix.
$$\int x \sec^2(2x) dx$$

x.
$$\int \frac{xe^x}{(x+1)^2} dx$$

xi.
$$\int \cos(3x) e^{-4x} dx$$

xii.
$$\int (2x-1)^4 \cos(5x) dx$$

c. Give five examples of integrals that cannot (or should not) be done with by parts.