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Solids of Revolution 
 

Solids of revolution are shapes formed by using a cross-sectional area and revolving the shape 

around an axis of rotation.  Shapes of this form are quite common in manufacturing, and so it’s 

important to be able to figure out the volume to determine how much material will be used, etc., 

as well as other examples such as finding the center of mass, etc.  This handout is going to take 

two approaches.  The first will involve a method with single variables designed for a course in 

integral calculus (Calculus II), and a second method done with multiple variables designed for a 

third semester or fourth quarter course in calculus (multivariable calculus).  The second method 

will begin with the equation for the solid of revolution in three variables and proceed from there.  

If you are using this for a Calc II course, it’s best if you skip over the advanced version of each 

example.  Later we will discuss calculating surface areas for these same kinds of solids. 

 

In the one-variable approach, there are two techniques available to us: The Washer Method and 

the Shell Method.  (A third technique, the Disk Method is just a special case of the Washer 

Method, and so we will largely ignore it here.)  In the case of the Washer Method, we will be 

reducing the problem to the calculation of a cylindrical slice of the shape (or a washer-shaped 

slice in most cases).  Using the area of this slice, we will be able to integrate to get the missing 

dimension.  In the multivariable case, we integrate in three dimensions, so we can build up the 

form from just a constant.  The Shell Method is a bit different, as it’s more closely related to 

polar coordinates than rectangular ones, but we will discuss the details more when we get to an 

example. 

 

Solids of Revolution problems are best learned by doing examples.  For a more theoretical 

derivation of the method, you can find this in your textbook. 

 

Example 1. Calculate the volume of the solid of 

revolution formed by revolving the region bounded by 
3 , 3, 0y x x y= = =  around the x-axis (y=0).  The 

region in the x-y plane looks like this.  Once we 

revolve it, the solid is given by the equation 
2 2 6y z x+ = , and shown below.  It looks a bit like a 

very squished French horn.  Here, we will use the 

Washer Method 2 2 2 2( ) ( )

b b

outer inner

a a

V R x r x dx or V R R dx = − = −  .  To do that, 

we need to an “outer radius” (R(x)) and an “inner radius” (r(x)).  The outer 

radius is given by the distance to the furthest part of the region to the axis of 

rotation (i.e. the function minus the axis of rotation), and in this case, that’s 
3 30 outery x x R= − = = .  The inner axis is given by the distance between the 

inner function and the axis of rotation (i.e. the function minus the axis of 

rotation), and in this case 0 0 0 innerR− = = .  When 0innerR = , the Washer 

Method reduces to the Disk Method where 2( )

b

a

V R x dx=  .  This will occur 
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whenever the region touches the axis of rotation along its whole length, or when one side of the 

region is the same as the axis of rotation, as it does here.  We will continue using the Washer 

Method, however, because the formula is more general.  Note: we are integrating in x because 

we are rotating around the x-axis—we would do the same if we were rotating around any line 

parallel to the x-axis—and because we have functions of x (y is defined in terms of x). 

 
33 3 7 7

2
2 2 3 2 6

0 0 0

3 2187
( ) ( ) 0

7 7 7

b

a

x
V R x r x dx x dx x dx

 
   

  
 = − = − = = = =  

 
    

 

Example 1 Advanced. When we have multiple variables available, we can calculate this by a 

double or triple integral, and using the equation of the three-dimensional region: 2 2 6y z x+ = .  

Solve for z: 6 2z x y=  − .  Thus, our double integral becomes 

( )
3 3

3 3

3 3

6 2 6 2 6 2

0 0

2

x x

x x

V x y x y dydx x y dydx

− −

= − − − − = −     where we are using the positive 

square root as the “top” function, and the negative square root as the “bottom” function.  Or, as a 

triple integral: 

6 23

3 6 2

3

0

x yx

x x y

dzdydx

−

− − −

   .  This is an even function of z, so we can reduce this integral to 

6 23

3

3

0 0

2

x yx

x

dzdydx

−

−

   .  This integral will need trig substitution if we leave it in rectangular 

coordinates.   

 

Starting from 

3

3

3

6 2

0

x

x

x y dydx

−

−  , which is where we will end up after the first step of the triple 

integral anyway, x is the constant since we are integrating for y, and so let 

3 3

3
sin ,sin , cos

y
x y dy x d

x
   = = = .  Then 

6 2 6 6 2 6 2 3sin (1 sin ) cosx y x x x x  − = − = − = .  Replacing 

everything in the integral now we get:  

 
6 2 3 3 6 2

6
6

cos cos cos

1 1
(1 cos 2 ) sin 2

2 2 2

x y dy x x d x d

x
x d

    

   

− =  = =

 
+ = − 

 

  


 

 

To get this back into terms of y, we apply the identity sin 2 2sin cos  = .  This gives us 

 
6

sin cos
2

x
  − , and then solving for θ in our substitution, and using the triangle above, we get  

3x  
y  

  

6 2x y−  
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3
3

3
3

3 3 6 26
6 2

3 3 3

0 0

3 33 3 6 6 3 3 6 6
6 6

3 3 3 3 3 3

0 0

2 2 arcsin
2

arcsin arcsin 2arcsin(1)

x
x

x x

x yx y y
x y dydx dx

x x x

x x x x x x x x
x dx x dx

x x x x x x

− −

 − 
− = − =  

   

    − − −
− − + =    

     

  

 

 

 

Since arcsin1
2


= , we are left with the integral 

3

6

0

2187

7
x dx


 = .  Notice that by the last 

integral here, we had derived the same formula we used in the one variable case.  That’s how the 

formula for the Washer Method was derived in the first place. 

 

We can make it a little easier if we switch variables.  This volume 2 2 6y z x+ =  has the same 

volume as 2 2 6x y z+ =  by replacing x and z, with z bounded by z=0 and z=3.    From here, we 

can convert to cylindrical or polar coordinates.  2 2 6 2 6 3x y z r z z r+ =  =  = .  Our double 

integral form them becomes 

2 27 2 27
4

3 3

0 0 0 0

r rdrd r drd

 

  =    , or in triple integral form 

332 27 2 3

0 0 0 0 0 0

r z

rdzdrd rdrdzd

 

 =      .  Compare the result you get from integrating these to the result 

from the one variable example.  Both all three integrals should yield 
2187

7


. 

 
3

3 32 3 2 3 2 3 2 22 7
6

0 0 0 0 0 0 0 0 00 0

1 1 2187 2187 2187
2

2 2 2 7 14 14 7

zz
r z

rdrdzd dzd z dzd d d

    


     
   

= = = = =  =   
   

        

 

 

Example 2.   Calculate the volume of the solid formed by revolving the region bounded by 
2 , 3, 0y x x y= = =  around the line 4y = − .  This 

example will be similar to example #1, but the axis of 

rotation is not y=0, and the washer method will not 

reduce to the disk method since the region and the 

graph do not touch.  The equation of the exterior of 

the three-dimensional region is 2 2 2 2( 4)y z x+ = +  or 

equivalently 2 2 4( 4)y z x+ + = .  Because the region 

doesn’t touch the axis of rotation, there is a 

cylindrical hole through the center that we didn’t 

have before, like a bore hole. 
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Using the Washer Method: 
2 2( 4) 4outerR x x= − − = + .  If you think about it, 

this makes sense because the function is an 

extra 4 units away from the axis of rotation than 

it is from the x-axis, where we normally 

measure function values.  Therefore 

0 ( 4) 4innerR = − − = .  This is the gap between 

the area we want and what we will need to 

remove from the center, our bore hole.  And 

again, we are using the Washer Method because 

y= -4 is parallel to the x-axis, and our function 

is in terms of x. (If it wasn’t, we’d have to solve for y(x) if that was possible in order to use this 

method.) 

 
3 3 3

2 2 2 2 2 4 2 4 2

0 0 0

3

5 3

0

( 4) 4 8 16 16 8

1 8 243 603
72

5 3 5 5

b

outer inner

a

V R R dx x dx x x dx x x dx

x x

   


 

= − = + − = + + − = + =

   
+ = + =   

   

   
 

 

Example 2 Advanced.  Similarly, we can use the 3D equation for the volume to calculate the 

answer using double or triple integrals with the same results.  As with Example 1, we switch x 

and z to convert to polar or cylindrical coordinates to avoid any possible trig substitution. 
2 2 2 2 2 2 2 2( 4) ( 4)y z x x y z+ = +  + = + 2 4r z = + .  Solving for z then gives: 4z r=  − .  

Note that the interior portion we are removing is just a cylinder of radius 4 and height 3, and so 

to get the volume of the missing center, we can apply the geometry formula 
2 2(4) 3 48cylinderV r h  = =  =  and just subtract that off our total volume of the exterior shape.  

Our volume integral is then: 

2 2 22 2

2 2 2

( 4)3 3

2 2 2

0 4 0 4( 4)

2 ( 4) 48

x yx x

x y

V dzdydx x y dydx 

+ −

− −− + −

= = + − −      in  

rectangular, or in cylindrical 

22 3 4

0 0 0

48

z

rdrdzd



 
+

−   . Completing the integration, we get 

( )
2

2 42 3 4 2 3 2 32
2

2

0 0 0 0 0 0 00

32 3 2 2

4 2 5 3

0 0 0 00

2
2

0

0

1
48 48 4 48

2 2

1 1 1 8 1 243
8 16 48 16 48 72 48

2 2 5 3 2 5

1 843 1 843 843
48 48 48

2 5 2 5 5

zz
r

rdrdzd dzd z dzd

z z dzd z z z d d

d

  

  




     

    


    

++

− = − = + − =

   
+ + − = + + − = + +   

   

− =  − = − =

      

   


603

5



 

As was expected. 
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Example 3. Calculate the volume of the solid of revolution bounded by the graph of 
3 , 3, 0y x x y= = =  (as in Example 1), but now revolved around the y-axis (x=0).  The equation 

for the three-dimensional solid is 
2

2 2 3x z y+ = . 

 

Alternate 1. Here, the problem is not set up ideally for the washer method.  To do it by this 

method, we would have to match the axis of rotation (the y-axis) with the variable of integration.  

We’d need to solve for x as a function of y in order to do this.  3 3y x x y=  = .  Now we can 

use the Washer Method with dy.  Our limits have also changed: when x=3, y=27.  What are our 

inner and outer radii?  The axis of rotation is to the left of the region, and so the leftmost function 

is now the inner radius, and the rightmost function is the outer radius.  
3 33 0 3, 0outer innerR R y y= − = = − = .  It’s easy to get confused here, but the region we are 

revolving is not touching the axis of rotation everywhere, and so it cannot reduce to the Disk 

Method.  Do not worry too much, however, about confusing Router and Rinner.  If you get the 

functions correct but subtract in the wrong order, you will get the correct magnitude and a stray 

minus sign, which you can neglect since volume must be positive. 

 

Our volume integral is then: ( )
27 27

2 2
2 2 2 33

0 0

3 9

b

outer inner

a

V R R dy y dy y dy  = − = − = −   .  To finish 

it off, then: 

327 327
52

3 3

00

3 729 486
9 9 243

5 5 5
y dy y y


  

=

   
− = − = − =   

   
 .  You should not expect 

an area equal to what you get rotating it around the other axis. 

 

Alternate 2. Instead of changing variables, though, which may not always be easy, we can apply 

the Shell Method and stay with the x variables.  The nice thing about the Shell Method is that the 

axis of rotation and the variable of integration should be opposites.  (Recall that when we are not 

rotating around a primary axis, it’s the axis parallel to the line we are using that determines this.) 

 

The Shell Method uses the formula 2 ( ) ( )

b

a

V r x h x dx=  , where r(x) is the radius of the shell, 

normally just a variable (or a variable minus the axis-of-rotation), and h(x) is the height of the 

shell, which is normally just the function (or difference of functions) defining the region.  In this 

example ( ) 0r x x x= − =  since the axis of rotation is x=0.  And 3 3( ) 0h x x x= − =  since the 

height of the region is defined by the top function minus the bottom function (y=0).  The limits 

are then the limits in x.  This gives the volume as 
33 3

3 4 5

00 0

1 486
2 ( ) ( ) 2 2 2

5 5

b

a

V r x h x dx x x dx x dx x


   = =  = = =    just as we had before.  If 

you’ve done everything correctly, these methods should yield the same results, and it can be a 

great way to master both methods, and check you work when no answer keys are available.  

(Time-consuming, admittedly, but effective.) 
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Example 3 Advanced.  Our three-dimensional equation for this volume is 
2

2 2 3x z y+ = , or if we 

solve for z, 
2

23z y x=  − .  In rectangular coordinates, our triple integral is 
2

233 3

3 32
23

27 27
2

23

0 0

2

y y x y

y y
y x

dzdxdy y x dxdy

−

− −
− −

= −     , which we could try to do with trig substitution as we 

did before.  However, a swap of variables as we had before will allow us to do the integral in 

cylindrical coordinates. 

 
2 2

2 2 2 2 333 3x z y x y z r z r z+ =  + =  =  = .  This replacement gives us a nice easy 

integral: 

3 32 3 2 3 2 2

4 5

00 0 0 0 0 0 0

1 243 486

5 5 5

r

rdzdrd r drd r d d

   


   = = = =        as was expected from the 

single-variable method. 

 

 

Let’s try one last example with the Shell Method. 

 

Example 4.  Find the volume of the solid given by the region bounded by revolved around the 

line y=6.  Our functions are in y variables and we are rotating 

around a line parallel to the x-axis, so we are all set up for the 

Shell Method integrating in y variables.    We need a radius 

function and a height.  The radius, r(y) recall is given by the 

variable and the axis of rotation: ( ) 6r y y= − , and the height 

h(y) is the right function minus the left function: 
2 2( ) 2 ( 4) 6h y y y= − − = − .  Finally, get our limits from 

intersecting 2 4x y= −  and x=2: 6y =  Putting this altogether 

our volume integral is  

 
6 6

2 3 2

0 0

6

2 4 3

0

2 ( 6)(6 ) 2 6 36 6

1
2 3 36 2 2 18 9 36 6 12 6 18 48 6

4

V y y dy y y y dy

y y y y

 

  

= − − = − − + =

     − − + = − − + = −      

 
 

 

This value is negative because the axis of rotation (y=6) is larger than any of the y values used in 

the integral.  So, technically, we should use 6-y here to get a positive result, but we can do that at 

the end here by just taking the absolute value of our answer, here: 48 6 18  −
 

. 

 

This problem can be reworked using the washer method to check the results, but I’ll leave the 

details for the practice problems. 
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Practice Problems. 

1. Redo Example 1 using the Shell Method and verify that you get the same result. 

2. Redo Example 2 using the Shell Method and verify that you get the same result. 

3. Redo Example 4 using the Washer Method and verify that you get the same result. 

4. For Advanced Students, do Example 4 using a double or triple integral.  You will 

probably want to switch to polar/cylindrical coordinates to avoid nasty trig substitution. 

5. Use the following regions to find the volume of the solid of revolution obtained from 

revolving around the axes: a) the x-axis, b) the y-axis, c) the line x=5, and d) the line y= 

(-2). 

i. , 2 1, 0y x y x y= = + =  

ii. 2,y x y x= =  

iii. 24, , 0x x y y= = =  

iv. 4, 0, 4y x y x y= − = + =

 

 

 

In most of these cases we’ve considered, we started out with equations that are in a particular 

variable, and except in one case, we kept them in that variable to integrate.  But what if our 

equations aren’t solved for a particular variable?  How do we know which variable to use?  Are 

there circumstances where we’d want to use one method or another?  Consider the situation 

where our region is defined by 4, 0, 4y x y x y= − = + =  how do we 

decide which method to use?  

 

First, graph the equations.  In this case, we just have nice linear 

equations, so that’s not a problem: solve for y and put them in your 

calculator or plot a couple intercepts.  You get the graph shown on 

the right.    Suppose I wanted to revolve this region, say around the 

x-axis, which method should I use? 

 

As it turns out, what to do here depends on figuring out in which 

direction, if any, the region can be done in one piece.  Is there a common top function and a 

common bottom function for the whole region?  Alternatively, is there a common right function 

and a common left function for the whole region?  It’s possible there won’t be any common 

functions.  In that case, just pick whichever variable you like and go for it piece-by-piece.  But 

often one variable choice will let you integrate the region in one piece, but another variable will 

need you to do two regions.  That’s the situation we have here. 

 

Look carefully at the graph again.  The height in the y direction 

(using x variables) is a problem. The height of the region to the left 

of the dashed line is given by the difference between y=4 and the 

line y=4-x.  But on the right side of the dashed line, the height of 

the region is determined by the difference between y=4 and y=x.  

That’s two different sets of equations.  If we want to work in x 

variables, then, we’d need to set up two different integrals, one for 

the left side up to the intersection at x=2, and one for the right side 
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from x=2 on.  This analysis does not depend on which axis we are revolving the graph around 

either, only which variable we are trying to use.  Now, consider the same region in the horizontal 

direction.  
 

In this direction, there is only one right function and one left function, 

so there will only be one integral.  In such a circumstance, we want to 

work in the y variables for sure because will be less work. 

 

So, now if we ask, which method do we use if we are revolving 

around the x-axis, we know that we want to work in y-variables, and 

so we should use the Shell Method.  If we want to revolve around the  

y-axis, we will use the washer method, because we are still using y-

variables.  Even if the equations are a bit messier than this, doing one 

integral is going to compensate for doing a bit more algebra up front. 

 

 

Surfaces of Revolution 
 

Surface area problems in one variable are related to arc length in one variable.  Recall our arc 

length formula is  
2

1 ( )

b

a

s f x dx= +  where f(x) is the function we are measuring the length on.  

If we take this stretch of curve and revolve it around a graph, we get a surface.  In the previous 

section we calculated the volume of the interior, here we are just interested in the surface area of 

the exterior.  Our general formula for the surface area is  
2

2 ( ) 1 ( )

b

a

SA r x f x dx = +  or 

 
2

2 ( ) 1 ( )

b

a

SA r y f y dy = +  depending on the variable our function is in.  The axis of rotation 

will change the radius function r(x) or r(y) but won’t change anything else about the problem.  In 

that way, surfaces are actually much easier than volumes. 

 

• If you are rotating around the x-axis and integrating in x-variables, your r(x) function will 

just be the function f(x).  If it’s a line parallel to the x-axis then it will be function minus 

axis of rotation. 

• If you are rotating around the y-axis and integrating in x-variable, your r(x) function will 

just be the variable x.  If it’s a line parallel to the y-axis, then it will be the variable minus 

the axis of rotation. 

• If you are using y-variables and rotating around the y-axis, then use f(y) (or the function 

minus the axis of rotation) for r(y). 

• If you are using y-variables and rotating around the x-axis, then use y (or the variable 

minus the axis of rotation). 

Notice that the two cases are parallel.  In one scenario you match the axis of rotation and you do 

one thing, and in the other your variable is opposite the axis of rotation and you do another.  

Compare this to the Washer and Shell Methods for volumes. 
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Example 5. Find the surface area of revolution for the curve 3y x=  revolved around the line x-

axis on the interval [1,2]. 

 

As with the arc length, we can only integrate certain functions 

by hand here without advanced integration techniques, but we 

have a few more choices for surface areas than for arc length, 

because we may be able to do substitution.  Here, our 

derivative is 23y x = , so we get 

 

 
2

2 3 4

1

2 ( ) 1 ( ) 2 1 9

b

a

SA r x f x dx x x dx = + = +  .  Because 

we are revolving around the x-axis, our function is r(x).  

Substitution will yield and answer: 4 3 31
1 9 , 36

36
u x du x dx du x dx= + =  = . 

2 145 145
3 3 31

3 4 2 2 2 2

10
1 10

1 2
2 1 9 2 145 10

36 18 3 27
x x dx u du u

 
     + = =  = −

        .  Like arc length 

problems, expect to routinely get very ugly numbers. 

 

 

Example 6. Find the surface area of revolution for the curve 2y x=  revolved around the line 

x=1 on the interval [1,2].  
 

Our derivative is just 2x, and we are revolving it around the line x=1, so our radius function is 

( ) 1r x x= − .  So we get 

 
2

2 2

1

2 2

2 2

1 1

2 ( ) 1 ( ) 2 ( 1) 1 2

2 1 2 1 2

b

a

SA r x f x dx x x dx

x x dx x dx

 



= + = − +

 
+ − + 

 

 

 

 

 

The first integral we can use u-substitution on, but the second 

piece we will need trig substitution.  Until we get to that 

section, evaluate it numerically in your calculator.  In general, 

we will need to only revolve around a major axis (the x-axis or 

the y-axis) if we wish to avoid the especially nasty integrals.  However, expect to be able to set 

up such problems even if you are not asked to integrate them by hand (yet). 

 

 

Practice Problems. 

6. For each of the curves below, find the surface area of revolution revolved around first the 

x-axis, and then the y-axis.  Set up the equations.  If they can be completed with u-

substitution, finish them; if not, stop at the integral. 

a. 2 1y x= +  on the interval [0,2] 
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b. 2y x=  on the interval [1,3] 

c. 
1

sin
2

y x=  on the interval [0,π/2] 

d. coshy x=  on the interval  [0,ln2] 

e. 2 4x y= −  on the interval [0,2] 

f. 2x y y= +  on the interval [0,1] 

7. Set up the same problems to revolve around the line y= -2, and x=4.  Don’t integrate 

these, just set up the equations. 

 


