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Riemann Sums Methods 
 
While we will be mostly using the right endpoint of each interval to calculate Riemann sums in this 
course, this is not the only way to do it.  Indeed, there are probably more ways than we can count that 
will satisfy the Riemann hypothesis, so we will only look at five of the standards.  To be clear, any 
partition of the interval [a,b] that has each [xi,xi+1] get smaller as n gets larger is sufficient, but irregularly 
sized intervals, at least for simple functions, tend to make things harder.  In general, we are looking for 
methods that are conceptually straightforward and are not too difficult to calculate.  For polynomials, 
this means regularly spaced intervals. 
 
The five methods we will be considering are: the right endpoint, the left endpoint, maximum, minimum, 
and the mean (midpoint).  This last method is essentially the Trapezoidal rule, which we will develop a 
general formula for later in the course.  
 
Let’s begin with the simplest method for polynomials, the right endpoint rule.  To refresh our 

memories, we are looking to fill in the components of the formula 
1
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f x f x x
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  .  (In the limit, of 

course, we get true equality, but for some of our methods, we won’t be developing a general rule and 

will only we working with finite n, so let’s keep the ≈ where it is.)  We first need to find ix .  In all our 

methods, we will be using regularly spaced intervals, and so 
i
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−
 = .  Consider the graph below of 

( ) sin(3 ) 1f x x= +  on the interval [1,5].  On the image below, n=16.  (We are using 16 rectangles here 

for the sake of illustration. You will never be asked to calculate that many by hand.)  Each 
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 = = = .  This is the width of each rectangle.  
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The ( )if x  represents the height of the function on the right end of each interval.    We need to 

calculate, therefore, 
16
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that for the graph above, ( ) sin(3 ) 1f x x= + , thus 
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(notice that each value of xi goes up ¼, and so the 3(1/4) is what we increase by in each sine function; 
the 16 on the end is the sum of the 16 successive +1s).  So then to estimate the region we calculate
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   which is just
16

1

3 1
sin 3 1 3.99

4 4i

i
=

  
+ +   

  
 . 

 
Recall that for general n, we do more algebra than brute calculation.  We can break the process down 
into six steps. 

1. Find 
i

b a
x

n

−
 = .  The values for a and b must be given, so this reduces to 

k

n
, where k is some 

known value. 

2. Find i ix a i x= +  , or in this case 
i

ki
x a

n
= + . 

3. Find an expression for ( )i

ki
f x f a

n

 
= + 

 
.  This involves replacing the expression for xi in the 

formula and simplifying the expression.  For instance, if ( ) 2 5f x x= −  then 

2
( ) 2 5 (2 5)i

ki ki
f x a a

n n

 
= + − = + − 

 
.  Remember that the a value is always given, so this will 

reduce to a polynomial in i alone (we treat n like a constant for now).  The more complex the 
polynomial, the more involved the algebra will be here. 

4. Write the expression 
1

( )
n

i i

i

f x x
=

  using the given values from #1 and #3. 

5. For the general n case, and only when we have polynomials, we can proceed to find an exact 
value by using our summation formulas to replace the i’s in our expression.  We will then only 
have n left, and we reduce.  At this point, we can estimate the function for any value of n. 

6. To find the exact value we take the limit as n goes to infinity: 
1
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=
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The left endpoint rule is very similar to the right endpoint rule except that we are working from the left 
endpoint.  This means we start counting at i=0 and go to n-1, or we start at i=1 and replace i with i-1 
everywhere in all our expressions.  When we are working with general n, we just replace i with i-1.  This 
will make the algebra in Step #3 a bit more challenging, but other aspects remain the same.  When doing 
this for a given n, it may be conceptually easier to think of starting from 0 and leaving out the last 
endpoint.  Consider the graph of our function with the left endpoint rule used to make the rectangles. 
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Notice now that for each rectangle, it’s the height of the function on the left side of the region that is 

determining the height of the rectangle.  Our ix  doesn’t change, and the values of the function don’t 

change either except that we use i=0 instead of i=n.  

( )
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if we multiply by ¼ now, which is the width of our rectangles we get 
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Note: Whether the left endpoint rule or the right endpoint rule will produce a larger value depends on 
the function.  If the function is increasing on the region or decreasing on the region on will consistently 
come out larger.  For a function like this that changes directions several times, which one is larger could 
depend on the number of n you choose.  Notice that some rectangles overestimate the region and some 
underestimate it from the graphs. 
 
Two methods that are useful theoretically are the maximum method, and the minimum method.  These 
methods are more difficult to execute in practice unless the graph is monotonically increasing or 
monotonically decreasing.  In such cases, they are equivalent to the right endpoint rule or the left 
endpoint rule (for the case of monotonically increasing graphs, the right endpoint rule is equivalent to 
the maximum rule, and the left endpoint rule is equivalent to the minimum rule; the reverse is true for 
monotonically decreasing functions).  For a function that changes direction the maximum rule states 
that you choose xi to be the x-value in each interval that gives you the largest value.  If there is a critical 
point in the region, it may be some point interior to the partition and not one of the endpoints.  
Consider the graph below illustrating the maximum rule. 
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In this example, every rectangle is an overestimate for the region being measured. 
 
In the minimum rule, the reverse is true: you want to choose values in the region that make the 
function value smallest, to generate an underestimate as shown below. 
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Both of these methods, because they can be difficult to implement are rarely used in numerical 
calculations, however, they are useful theoretically because the two methods are used in conjunction to 
prove that Riemann sums converge generally, since both the minimum and the maximums will converge 
to the same value for very large n. 
 
The fifth method is the midpoint method.  In this case, we are trying to get a better estimate for the 
region not by using the largest or smallest values in the region (or the leftmost or rightmost endpoints), 
but instead, we choose the midpoint of the region.  As I mentioned earlier, this method has been 
formalized as the Trapezoidal rule.  It can be used for general n with polynomials, but with some 
difficulty.  For evenly spaced intervals, it’s a decent compromise between getting better accuracy and 
using fewer terms. 
 

 
In the graph above, look carefully where the height of the rectangles are measured.  They aren’t 
measured at either end, but in the middle (technically, the average of the endpoints).  This has the effect 
of overestimating in part of the region, and underestimating in another part of the same partition 
region.  While certainly not perfect it does prove to be a big improvement. 
 

To calculate this by hand, our ix  doesn’t change.   As before, it’s xi that is changing.  The value we want 

to use in each case is 1

2

i ix x− +
. Another way to thing about this in regularly spaced intervals is 

2

i
i

x
x


−

.  Our calculations then become 
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 .  Substituting into the 

function then 
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sin 3 1 sin sin sin ... sin 16 15.707...
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 And if we multiply by the width of our rectangles we get 3.92686, which isn’t a terribly bad estimate.  
Better than our other ones.  The true value of the area (obtained from using even more n or by the 
Fundamental Theorem of Calculus) is about 3.92323. 
 
The graph below shows the results from Mathematica for n=1024. 
 

 
 
Practice: Try calculating the Riemann sums for n=6  and n=5 on the interval [0,2] and [1,4] respectively 
for the following functions.  For each function use the right endpoint rule, the left endpoint rule and the 
midpoint rule.  For each of the polynomials, also find the exact value for the right endpoint rule. 
Compare your answers with the numerical results you obtain from your calculator.  They should be 
approximately correct. 

1. ( ) 2 5f x x= −  

2. 2( ) 1f x x= +  

3. 2( ) 6f x x x= − +  

4. 3( )f x x=  

5. ( ) ln( 1)f x x= +  


