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Integration by Substitution 
 

Integration by substitution is a technique that allows us to find antiderivatives of functions 
derived via the chain rule. 
 
Recall, the chain rule is used for taking derivatives of complicated functions created by 
composing two functions: ( )f x and ( )g x becomes ( ) ( ( ))h x f g x= .   

 

For instance, if ( ) cosf x x= and 2( ) 2g x x= + , then 2( ) cos( 2)h x x= + .  Following the chain 

rule, 2( ) ( ( )) ( ) sin( 2) 2h x f g x g x x x  =  = − +  . 

 

Integration by substitution can get us from 22 sin( 2)x x dx− +  back to 2cos( 2)x C+ +  

without explicitly knowing the result in advance. 
 
There are two common forms of functions that can be solved by substitution.  They will be  

1. ( ) ( )f x f x dx  or 

2. ( ( )) ( )f g x g x dx  

 
*The first case is really a special case of the second, but it shows up so often, we will treat it 
separately. 
 

In case #1, we have a simple function times its own derivative, for example sin cosx xdx .  In 

case #2, we have a complicated composite function times the derivative of the “inside”, for 

example 
323 xx e dx  or our example from above 22 sin( 2)x x dx− + . 

 
Case #1. 

If your problem is of the form ( ) ( )f x f x dx , then let ( )f x u=  which will be our 

substitution variable.  If we take the derivative of this statement on both sides we get 
( )f x dx du =  using differential notation.  Replace these things in the integral: ( )f x  with u  

and ( )f x dx  with du .  We get ( ) ( )f x f x dx udu =  .  Now just integrate according to the 

power rule: 21

2
udu u C= +  and then replace u with your function of x again: 

 
221 1

( )
2 2

u C f x C+ = + .  You can check by applying the chain rule to see that you do get the 

expression originally in the integral. 
 

Example 1.  sin cosx xdx     Let sinu x=   and then cosdu xdx= .   

This implies 2 21 1
sin cos sin

2 2
x xdx udu u C x C= = + = +  . 
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Case #2. 

Let’s look at the slightly more complicated case of ( ( )) ( )f g x g x dx .  Here we want ( )g x u=  

and if we take the derivative on both sides as before we get ( )g x dx du = .  What we get 

then is ( ( )) ( ) ( )f g x g x dx f u du =  .  But at least now we have a simpler function to 

integrate and no product to worry about.  Integrate with the u-function, and then be sure to 
replace everything back to your x-function to finish. 
 

Example 2. a. 
323 xx e dx  

In an exponential function, the “inside” g function is the exponent of the exponential.  So let 
3u x= , taking the derivative we get  23x dx du= .  So 

3 32 23 3x x ux e dx e x dx e du=  =   .  This is 

easy to integrate from here.  
3u u xe du e C e C= + = + once we put everything back. 

 

b. 22 sin( 2)x x dx− +  

Let 2 2u x= +  since that is “inside”, and then 2xdx du= .  Here only the 2x is the derivative of 
the inside of the sine function, so when we make our substitution we will leave the negative 
behind. You can rearrange to make this clearer: 

2 2sin( 2) 2 sin cos cos( 2)x xdx udu u C x C− +  = − = + = + +   which is what we started with at 

the top. 
 
Tips for choosing u. 
Sometimes only experience tells you want to choose, but there are some usual suspects. 

1. If you have either a log function or an inverse trig function, it must be u since we 
cannot obtain these functions by taking derivatives (i.e. we can’t integrate them). 

a. tan ln(cos )x x dx    

ln(cos )u x=  even if you don’t know that tan x− is the derivative of ln(cos )x .  (If 

it’s not the derivative, we will need another technique.) 
 

b. 
ln x

dx
x     lnu x=  

 

c. 
( )4

1

log
dp

p p  

4logu p=   You’ll want to look up how to do derivative for logs other than natural 

logs.  In this case: 
1

ln 4
du dp

p
=  

d. 
2

arccos

1

x
dx

x−
    arccosu x=  
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2. If you have a trig function, it’s the angle inside the function that is to be replaced with 
u. 

a. 22 cos( 2)x x dx+     2 2u x= +  

 

b. sin( 1)x xe e dx+     1xu e= +  

 
3. If you have an exponential function whose exponent is other than x (or whatever 

variable you are using), let the exponent be u.  If you let the whole exponential be u, 
you will get another exponential when you take the derivative.  So, if you have only 
one, using the whole thing won’t help you. 

a. 
323 xx e dx      3u x=  

 

b. 2 tansec xxe dx     tanu x=  

 
4. If you have powers or roots, use the inside as u.  Do not use the exponents, though. 

a. 3 4 2( 2 6) (3 2)x x x dx+ − +   3 2 6u x x= + −  

 

b. 22 1x x dx+     21u x= +  

 
5. If you have any denominators, if the numerator is one degree less than the 

denominator, there is a good chance (at least in the beginning here) to let the 
denominator be u.  If there are exponents, though, see above.  This can be tricky with 
trig functions. 

a. 
2

2

1

z
dz

z−
     21u z= −  

 

b. 
2

2 2

2 1

x
dx

x x

−

− +     2 2 1u x x= − +  

 

c. 
3

4 1

t
dt

t +      4 1u t= +  

 

d. 
2

3

csc

cot

x
dx

x     cotu x=  

 

e. 
3

x

x

e
dx

e +      3xu e= +  

 
6. If you have a product of three or more terms, you can do a double substitution or 

recognize that 2 of the products are actually just coming from a double chain rule and 
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do it in one step.  To do that latter, look for the most complicated product, and take 
the largest inside function you can.  

a. ( ) ( )
2 2 1

2 23 3 3tan secx x x dx
−

  

i. You can choose 
2

3u x=  and since 
1
3

2

3
du x

−
=  this will reduce the 

problem to 2 23
tan sec

2
u udu , but then you will have to do a 

second substitution in order to finish integrating. Choose a 

different variable, let 2tan , secw u dw udu= =  and this will get us to 

a point where we can integrate finally: 23

2
w dw .  (we will explain 

the constant below) 

ii. If, however, you choose ( )
2

3tanu x=  to start with, you can get to 

this same integration point in one step.  When you take the 
derivative, you will get both missing pieces from the chain rule 

since ( )
2 1

2 3 3
2

sec
3

du x x dx
−

=  . 

7. No substitutions can ever have your derivative (du) end up in the denominator.  If it 
is, then your substitution is incorrect, or the integral can’t be done by this method. 

 
What if your substitution and your integral don’t exactly match up? 
This happens most of the time, but as long as we are only off by a coefficient (a constant 
multiplier) we can correct for this by tweaking the constants.  It’s the variable part that must 
match up in all cases.  As long as that is true, we can adjust the others. 
 

Example 3.  3xe dx  

Here, we let u=3x and du=3dx.  But we don’t have a 3 you say?  There are two ways to deal 
with this: 
 

Method #1: Divide it to the other side: 
1

3
du dx= .  Now we can substitute. 3 1

3

x ue dx e du=   .  

We can rearrange to move the constant out of the way, and integrate.  

31 1 1

3 3 3

u u xe du e C e C= + = + .  And of course, you can always check that when you take the 

derivative, the factor 3 from the chain rule will cancel out and we’ll get the function we 
started with. 
 
Method #2: The other alternative is to multiply the entire integral by one in the form here of 
1

3
3
 , then pull the 3 inside the integral to make the substitution: 
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3 3 3 31 1 1 1 1
3 3

3 3 3 3 3

x x x u u xe dx e dx e dx e du e C e C=  =  = = + = +    .  Either method will get us 

the same answer; however, I tend to prefer method #1. 
 
Remember, though, this can only be used to adjust constant multipliers.  It cannot be used to 
adjust variables! 
 

Example 4.  
2

1

2 3

x
dx

x x

−

− +  

Let 2 2 3, (2 2)u x x du x dx= − + = − .  But that’s not quite what we have in the numerator,  But 

if we factor out a 2 and divide: 
1

(2 2) 2( 1) ( 1)
2

x dx x dx du x dx du− = − =  − = .  Substituting 

now we get: 2

2

1 1 1 1
ln | | ln | 2 3 |

2 3 2 2 2

x du
dx u C x x C

x x u

−
= = + = − + +

− +  . 

 

Example 5.  
2

3x
dx

e −  

Sometimes, you can do algebra to get a problem that doesn’t look like it can be done with 
substitution into a form where it can be done.  Exponentials are most susceptible to this.  

Here, multiply by one in the form of 
x

x

e

e

−

−
.  We use this form because exponentials need a 

second copy for the derivative.  If we had an xe−  in the denominator, we’d multiply by 
x

x

e

e
 

instead.  But in our case:  
2 2 2

3 3 1 3

x x

x x x x

e e
dx dx dx

e e e e

− −

− −
=  =

− − −    once we distribute 

through the denominator.  Now, we can do substitution with u equal to the denominator.  
1

1 3 , 3
3

x x xu e du e dx du e dx− − −= − =  =  after the two negatives cancel each other out.  The 2 

in the numerator can just be pulled out of the integral.  

2 2 2 2
2 ln | | ln |1 3 |

1 3 1 3 3 3 3

x x
x

x x

e e dx du
dx u C e C

e e u

− −
−

− −
= = = + = − +

− −    

 
 

Example 6.  
2

4

6 9

x
dx

x x

−

− +  

Let 2 6 9, (2 6)u x x du x dx= − + = − .  The common factor on the derivative is 2 and dividing 

this out we get 
1

( 3)
2

du x dx= − , but this isn’t exactly what we have.  If we want to continue 

doing the problem here, we have to split the problem into two parts where the numerator 

adds to x-4 and one piece is x-3, i.e. 
2 2 2

4 3 1

6 9 6 9 6 9

x x
dx dx dx

x x x x x x

− − −
= +

− + − + − +   .  We 
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can do the first of these integrals by substitution, but the second piece will have to be done 
by completing the square and either doing a power rule or an inverse tangent integral or 
partial fractions, depending on whether the denominator is a perfect square (as it is here) or 

whether it has an extra constant (what would happen if our denominator was 2 6 10x x− +  
instead).  
 
To finish off the example here: 

 

2 2 2

2 1

2 2

2

4 3 1

6 9 6 9 6 9

1
1 1 1 1 12 ln | |

( 3) 2 2 2

1 1 1
ln | 6 9 | ln | 3 |

2 3 3

x x
dx dx dx

x x x x x x

du
du du

dx dw w dw u w C
u x u w u

x x C x C
x x

− −

− − −
= + =

− + − + − +

−
+ = − = − = + + =

−

− + + + = − + +
− −

  

       

Where I let 3,w x dw dx= − =  in the second integral, and in the last step, I just simplified using log 

rules. 

 
 

Example 7.    4sec tanx xdx  

Some trig functions problems will require us to apply trig identities or pull apart powers of 
functions in order to do the integral.   This particular example can be done in two different 
ways.  They will look different, but they will be algebraically equivalent (plus or minus a 
constant). 
 

Method #1.  We may notice that 2tan , secu x du xdx= = .  But what do we do with the other 
2sec x ?  We replace it with 2 2sec 1 tanx x= + , which will give us: 

4 2 2 2 2

3 2 3 2 4 2 4

sec tan sec sec tan sec (1 tan ) tan

1 1 1 1
(tan tan )sec tan tan

2 4 2 4

x xdx x x xdx x x xdx

x x xdx u u du u u C x x C

=  = + =

+ = + = + + = + +

  

 
 

 
Method #2.  Alternatively, we may pull out a secant and get the following: 

4 3sec tan sec sec tanx xdx x x xdx=   .  In this case we can let sec , sec tanu x du x x= = .  This 

gives us 3 3 4 41 1
sec sec tan sec

4 4
x x xdx u du u C x C = = + = +  .  Using the same Pythagorean 

identity as above, you can verify algebraically the equivalence of the two results. 
 
This example can be done by both methods because of the powers of the trig functions.  
Some problems of this type can only be done one way because the functions can’t be 
completely converted.  (We’ll get more practice with these examples later in the course.) 
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Practice Problems. 
1. Write each composite function ( )h x  as ( ( ))f g x  or ( ( ( )))a b c x  by listing ( ), ( )f x g x  or 

( ), ( ), ( )a x b x c x  as appropriate.  Think about this in terms of the chain rule: how many times 

will you have to apply it?  If just once, you have the first kind of function; if twice, the second 
kind. 
a. ( ) sin(3 )h x x=  

b. 
2( 2)( ) 3 xh x −=  

c. 
2

( ) tan( 1)xh x e= +  

d. 2( ) csch (2 )h x x=  

e. 2( ) 1 6h x x= +  

f. ( ) ln(13 11)h x x= −  

g. ( )
7

3 3( ) 3 1h x x x= + −  

h. 
1

( )
4 17

h x
x

=
−

 

i. ( ) 1h x x= +  

 
2. For each of the ( )g x  and ( ( ))b c x  in a-i above, find ( )g x  and ( ( )) ( )b c x c x  . 

3. Integrate. 

j. sin(3 )x dx  

k. 
2( 2)( 2) 3 xx dx−−   

l. ( ) ( )
2 2 22tan 1 sec 1x x xxe e e dx+ +  

m. 2 3csch (2 )coth (2 )x x dx  

n. 21 6x x dx+  

o. 
ln(13 11)

13 11

x
dx

x

−

−  

p. 
7

2 3 3( 1)( 3 1)x x x dx+ + −  

q. 
1

4 17
dx

x −  

r. 
1

1
dx

x x+
  

4. Integrate the examples from the “Tips” section. 

s. tan ln(cos )x x dx  

t. 
ln x

dx
x  
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u. 
( )4

1

log
dp

p p  

v. 
2

arccos

1

x
dx

x−
  

w. 22 cos( 2)x x dx+  

x. sin( 1)x xe e dx+  

y. 
323 xx e dx  

z. 2 tansec xxe dx  

aa. 3 4 2( 2 6) (3 2)x x x dx+ − +  

bb. 22 1x x dx+  

cc. 
2

2

1

z
dz

z−
 

dd. 
2

2 2

2 1

x
dx

x x

−

− +  

ee. 
3

4 1

t
dt

t +  

ff. 
2

3

csc

cot

x
dx

x  

gg. 
3

x

x

e
dx

e +  

hh. ( ) ( )
2 2 1

2 23 3 3tan secx x x dx
−

  

5. Integrate. 

ii.  
2sinsin cos xx xe dx  

jj. 5log x
dx

x  

kk. tan xdx  [Hint:  write as 
sin

tan
cos

x
x

x
= .] 

ll. 
2

2 5

1

x
dx

x

−

+  

mm. 
4

5 2 x
dx

e−+  

nn. 
2

2

arcsec

1

x
dx

x x −
  

oo. 2cos tan(sin )sec (sin )x x x dx  

pp. 
2

2

arcsec 3

9 4

x
dx

x x −
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qq. 2 3cos sinx xdx  


