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Taylor Polynomials II 
 
Once we understand how to find Taylor polynomials, the next question is: how many terms do we need 
to find, and how good is the approximation?  Let’s consider a couple different functions and look at the 
graphs.  We can then visually compare the quality of the approximation.  After we do this for several 
example functions, we will consider error estimation. 
 
Example 1. Let’s start with the example of cos(x). 
 
The graph of the regular cosine function is shown for two 
complete periods.  This is a fairly complicated function to 
model with a polynomial, but let’s see how it works. 
 
The Taylor polynomial expansion begins with f(c).  For the 
sake of simplicity here, let’s let c=0.  In this case, f(0)=cos(0)=1.  
So our 0-order Taylor polynomial is just y=1.  Since cosine has 
no linear term in the expansion (we can see this by taking the 
derivative and letting c=0 again, we get a zero).  So y=1 is also 
the first order Taylor polynomial as well. 
 
The graph below shows both the original cosine function and 
the Taylor polynomial centered at zero.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We’ve zoomed in on x=0.  For small angles (in radians, of course), y=1 is a decent approximation to 
f(x)=cos(x).  By a small angle here, I’m thinking -0.4<x<0.4  based on the graph.  That’s about 22°.  I’d 
estimate the error is around 0.1.  Of course, the tolerable error size depends on your application.  
Outside these values, the approximation becomes increasingly worse, until it reaches a maximum at 
multiples of π. 
 
Now let’s consider the second (and third) order Taylor polynomial for cosine. 
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That new bottom curve is the new approximation.  You can work out for yourself that the approximation 

is now 
2

1
2

x
y = − .  This approximation shows substantial improvement over the 0-order approximation 

because the graphs are practically on top of each other well past our ±0.4 points.  The separation 
becomes visible in our graph only around ±1 radian≈57°.  
 
Let’s consider the next two Taylor polynomials for f(x)=cos(x).  The 6th-degree Taylor polynomial is now  
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2 4 6

1
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x x x
y = − + − .  With each new additional term, the errors close to zero will get smaller and 

smaller (much less than 1% for small angles), and decent quality estimates (under the 0.1 we’ve been 
using) will extend further and further from zero.  If we take still more terms, we can do still better.  The 
graph below shows the 8th and 10th degree polynomials, up to 
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Taylor polynomials are always approximations, but as we increase the number of terms, and our 
estimates improve we can get arbitrarily good approximations for any value of x, even if the 
approximation is centered at 0.  If we take an infinite number of terms, we can reproduce the function 
exactly.  This is a Taylor series. 
 
Practice: Find the next two terms of the Taylor polynomial for cosine (that’s up to the 14th-degree term).  
Obtain the graph of the polynomial.  (You can use a program called GraphCalc to print it out.)  Estimate 
from the graph for what angles (in radians) the graph is with 0.1 of the original cosine function.  Use that 
number to calculate the actual error (based on the value of cos(x) at that point and the value of the 
estimate at the same point).  Based on your equation, establish a formula for the successive terms of the 
Taylor series (your formula may be in terms of the series, rather than orders of the Taylor polynomial). 
 

Example 2. For the second example, let’s consider 1( ) tan ( )f x x−= , and let’s choose c=1 this time.  The 

Taylor polynomial for this function has terms of all orders but calculating derivatives is much harder.  So, 

let’s consider the zeroth-order polynomial.  This is 1tan (1)
4

y
−= = .  As you can see from the graph, 

the constant function is an extremely poor approximation of the polynomial, which is why the linear, or 
first-order Taylor polynomial is usually the smallest order used on a practical level.  That approximation 

is  
1

( 1)
4 2

y x


= + − .  The graph of both approximations, together with the original inverse tangent 

function is shown below. 

 
The first-degree approximation is not bad for tangent values close to one radian, but basically just a 

rough estimate.  As with the cosine graph, the second order 21 1
( 1) ( 1)

4 2 4
y x x


= + − − −  does a much 

better job:  
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Look how close that approximation is now all the way back into negative values!  Unlike the cosine 
function, the inverse tangent graph (in part because we’ve shifted away from the origin) has significant 
asymmetry in the range of values for which it is a good approximation. 
 
Let’s jump of several steps and see how good we can get from the fifth-degree approximation 

2 3 51 1 1 1
( 1) ( 1) ( 1) ( 1)

4 2 4 12 40
y x x x x


= + − − − + − − − . 

 
We can see a couple interesting features here.  The second-degree approximation actually does a better 
job at x= -0.5 than does the 5th degree equation.  However, as expected, the match for values close to 
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one radian is phenomenal.  One of the curious things about this Taylor expansion is that the fourth-
degree term is missing.  This is repeated in the 8th-degree term as well, and all other multiples of 4, 
those powers are missing.  This will make the job of coming up with a Taylor series formula much more 
difficult. 
 
There is always a trade-off between the number of terms you use and the value of the error.  This is 
generally why we don’t use Maclaurin polynomials for everything.  Rather than using more terms, in 
terms of calculation effort, it’s better to change the center of expansion than to use more and more 
terms of the series.  However, if our intention is to work with the series (in the form of a general 
expression for the terms), centering the expression at zero makes the series easier to write, and the 
infinite series is an arbitrarily close match at any point. 
 

Practice: Calculate the true error for 1( ) tan ( )f x x−=  at the point x= -0.5 and at x= 0.5.  Which Taylor 

polynomial is the best match in each case?  Can you explain why the 4th-degree (and other multiples of 
the 4th degree) vanish? 
 
Error Estimates.  So far, we’ve been calculating true errors: the actual difference between a particular 
approximation and the true value of the function.  While this is always the most accurate, what if we 
want to determine how many terms we will need to get less than a given error range, without actually 
working out more terms of the series than we will actually end up needing?  This is where the error 
function comes in. 
 
The formula for Taylor polynomials our textbook gives is: 

2 3 ( )( )( ) ( )( ) ( )( )
( ) ( ) ( )( ) ...

2! 3! !

n n

n

f c x c f c x c f c x c
f x f c f c x c R

n

 − − −
= + − + + + + +  where Rn is 

the remainder.  That formula is given separately, and we can think of it as the next non-zero term in the 

series: 
( 1) 1( )( )

( 1)!

n n

n

f z x c
R

n

+ +−
=

+
.  All the values are familiar except the z, which represents some 

number (unknown to us) at which we are evaluating the n+1st derivative.  For some functions we will be 
able to choose a maximum value for this number that covers the entire function.  In other cases, we will 
restrict the domain over which the error estimate applies, and use the maximum of function in that 
range.  Because there are two different scenarios here, we will do two examples. 
 
Example 3. For the cosine function we can choose a maximum value over all derivatives that can be 

used for ( 1) ( )nf z+  since the derivatives of cosine are always ±sin(x) or ±cos(x), we know the maximum 

value of any derivative is always ±1.  Since we don’t care about the sign when we are calculating errors  

(since they are themselves absolute values), we can replace ( 1) ( )nf z+  with 1 in any cosine or sine 

function error estimate. 
 
Let’s consider the scenario where we’d like to expand f(x)=cos(x) function as a Maclaurin polynomial, as 
we did in Example 1, and we’d like to determine how many terms we will need to get an error estimate 
of less than 0.0001 for some given value of x.  Let’s say, x= -1 radians.  Because we are using cosine and a 

Maclaurin series, we get the following: 
1(1)( )

0.0001
( 1)!

nx

n

+


+

.  If we replace x with -1, this reduces further 
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to 
1

0.0001
( 1)!n


+

.  Getting n on one side we get: 
1

( 1)! 10,000
0.0001

n+  = .  For what n is 

(n+1)!≥10,000?  When n=7, n+1=8 and 8!=40,320.  This means we will need 7 terms in the series to get 
our Taylor polynomial within 0.0001 of the true value of cosine at x= -1 radians. 
 
To be sure, this is an estimate.  It may very be true with fewer terms, but we know that we won’t need 
more terms than this. 
 
Practice: Repeat this process for f(x)=sin(x).  Estimate the number of terms you will need to approximate 
f(x) with a Maclaurin polynomial at x=π, with an error of 0.001.  Because xn+1 does not reduce away quite 
as easily as in our example, you may want to evaluate the expression numerically in your calculator 
table. 
 
Example 4. Consider the function f(x)=ex.  If we expand this function around x=1, we get the following 

Taylor polynomial (out to 5 terms): 𝑦 = ⅇ + ⅇ(x − 1) +
1

2
ⅇ(x − 1)2 +

1

6
ⅇ(x − 1)3 +

1

24
ⅇ(x − 1)4 +

1

120
ⅇ(x − 1)5….  We’d like to know, how many terms do we need to approximate this function within 

0.0001 at x=e.  This is a relatively straightforward derivative in that every ( ) ( )n xf x e= .  But this 

function has no maximum value.  It never gets smaller than zero, but blows up to infinity.  In this case, 
we will choose z to be either c or x (since there are also no critical points).  We will test both values, and 

choose the larger value (the value that makes the function larger, that is) for the ( 1) ( )nf z+  term as z.  

Since ee>e1, we will use ( 1) ( )n ef e e+ =  (notice that if x<1, we would use e1).  Our 

error expression then becomes 
1( )( 1)

0.0001
( 1)!

e ne e

n

+−


+
.  I will have to evaluate 

this numerically in my calculator to get an answer.  In scientific notation 
0.0001=1x10-4, so I need a number smaller than this (i.e. something with a 10-5 
next to it).  Entering this function on the Y= screen and replacing n with x, I find 
that n = 11. 
 
 
Practice: Let’s do this another way.  Consider the 5th-degree Taylor polynomial for 
f(x)=ex given in Example 4.  How large (or small) an x can I use and still be within 
an error 0.0001.  Here, n is give (n=5) and I am looking for x in the expression.  For 

the values larger than one, ( 1) ( )n xf z e+ = , and for values smaller than one, 
( 1) 1( )nf z e+ = .  Estimate your answers to 3 decimal places.  

 

A1: 
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y = − + − + − + −  , 10% error @±4.4 

radians≈0.104, series 
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A2: x=0.5, 5th-degree≈0.00038, x= -0.5, 2nd-degree≈0.08; 4th derivative is 0 at 
x=1 
A3: ≈14 
A4: 0.455<x<1.501 


