Confidence Intervals – One Sample

You can use the TI-83/84 calculator to calculate confidence intervals for population means (both when σ is known and unknown) as well as population proportions.

Press and arrow over to the **TESTS** menu. Scroll down to find

7: Zinterval for the confidence interval for the population mean μ when σ (*population* standard deviation) is known

8: Tinterval for the confidence interval for the population mean μ when σ is unknown

A: 1-PropZInt for the confidence interval for the population proportion *p*

EDIT CALC MESME 511-ProeZTest	
6:2-PropZTest	
8: TInterval	
9:2-SampZInt… 0:2-SampTInt…	
A↓I-PropŻInt…	

Confidence Interval for the Population Mean $\mu\,$ (When $\,\sigma\,$ is Known)

Example: Suppose a random sample of 50 pigs at a local farm result in a mean weight of 86.5 lbs. The population standard deviation is known to be 7.5 lbs. Calculate the 90% confidence interval for the population mean.

Since the population standard deviation is known and the sample size is greater than 40, use the Normal

Distribution (*z*). Press and arrow down to **7**: **ZInterval**. Highlight **Stats** and input the population standard deviation, sample mean, sample size, and confidence level. Highlight **Calculate**

and press **ENTER**. The confidence interval is displayed in parentheses along with the sample mean and sample size.

Confidence Interval for the Population Mean $\mu\,$ (When $\,\sigma\,$ is Unknown)

Example: *Consumer Reports* gave the following information about the life (hours) of size AA batteries in toys:

2.3 2.3 4.2 0.1 3.7 3.3 1.3 1.3	2.3	2.5	4.2	6.1	5.7	5.5	1.3	1.5
---	-----	-----	-----	-----	-----	-----	-----	-----

Assume that the population of battery lives is approximately a normal distribution. Find a 95% confidence interval for the mean life in hours for all AA batteries used in toys.

Since σ is unknown, the sample size is also less than 40, and the population is approximately normally distributed, use the t-distribution.

First, ent	ter the d	ata in list	L ₁ . Then go	to STAT a	nd arrow to TESTS to choo	ose 8: TInterval . Since
we enter	ed our c	data in list	L₁, highlight	Data. Then e	enter L_1 as the List (press	2nd 1) and
95% as o displayed	our conf d in pare	idence lev entheses a	el. Highligh along with th	t Calculate ar e sample mea	n, sample standard deviati	nfidence interval is on and sample size.
L1 2.5 4.2 6.1 5.7 5.5 1.3	L2 	<u>L3 1</u> 	EDIT CA 2↑T-Tes 3:2-Sam 4:2-Sam 5:1-Pro 6:2-Pro 7:ZInte	LC MESME •ZTest •TTest •ZTest •ZTest •ZTest •Val	TInterval Inpt: Deve Stats List:L1 Freq:1 C-Level:.95	TInterval (1.9889,5.2861) x=3.6375 Sx=1.971900823 n=8

Confidence Interval for the Population Proportion, p

5:1-PropZTest... 6:2-PropZTest... 7:ZInterval...

🔡 TInterval.

Example: Suppose a random sample of 40 community college students shows that 25% have enrolled in one or more on-line classes. Calculate the 92% confidence interval for the population proportion.

 G
 STAT

L1(0) = 2.3

and select A:1-PropZInt for the confidence interval for the population proportion p. Press ¹ Enter the number of successes x (must be a whole number! Round to a whole number if this calculation results in a decimal value), the sample size n, and the confidence level C. Highlight **Calculate** and press

ENTER

. The confidence interval is displayed in parentheses along with the point estimate \hat{p} and sample size.

