TI83/84 Correlation: LinRegTTest

You can use the TI-83/84 calculator to determine the correlation between two variables, conduct hypothesis tests for a population correlation coefficient, calculate and graph the linear regression equation, and use the equation to predict *y*-values.

Turn Diagnostics On:

MODE menu.) After doing this, the correlation coefficient r will appear with the linear regression equation.

You only have to do this one time, unless you turn the diagnostics off.

CATALOG	CATALOG DependAsk DependAuto det(Dia9nosticOff Dia9nosticOn dim(Disp	Dia9nosticOn Done

Find the regression equation, r, and r^2 and conduct a hypothesis test to determine if there is linear correlation: Example: Let's look at degrees north latitude vs. April air temperature. Use the data below to find the

regression equation, r, r^2 , and to test for a linear relationship at the 10% level of significance:

Procedure:

• Enter the *x*-values (north latitude) in L₁ and *y*-values (April temperature) in L₂:

L1	L2	L3 3	
6.0000 18.000 23.000 30.000 35.000 42.000 47.000	89.000 84.000 97.000 83.000 63.000 68.000 46.000		
L3(1)=			

Press

and arrow over to the TESTS menu

- Select E:LinRegTTest by highlighting the E and pressing or by typing E
- In the form that comes up enter the list name (L₁) that contains your independent variable in **Xlist:** and the list name (L₂) that contains your dependent variable in **Ylist:**
- Make sure that Freq: is set to 1
- Select the appropriate alternative hypothesis based on your problem statement by highlighting $\neq 0$,

- Leave **RegEQ:** blank, or enter the **Y-VARS** location where you want to store the regression equation (for more, see below)
- Highlight **Calculate** and press **ENTER** to display the results:

You can now complete your hypothesis test either by comparing the test statistic (t) to critical values or by comparing the P-value to the α level given in the problem. In this case, since the P-value is less than the significance level given in the problem (. 10) we reject H_o and can say that at the 10% level of signifigance there is enough evidence to say that there is a realationship between north latitude and April air temperature. We also know that this relationship is a negative one based on the sign of both b and r. This tells us that as we move further north the April temperature decreases.

Construct a scatter plot of the points:

•

- Press 2nd Y= for STATPLOT
- Highlight **1:Plot1** and press

ENTER

Select **On** (put cursor on On and press) and the scatter plot (first graph on the first row)

• Set **Xlist** to L₁ and set **Ylist** to L₂.

ZOOM

• Set your mark for each point by selecting a box, cross, or dot:

Next press

and select **9:ZoomStat** to set the graphing window and see the scatter plot

• Highlight 1:value and press

ENTER

- To predict the April temperature for Columbus, Ohio (x = 40), type 40 and press
- A cursor will appear and you will see that Y=64.858 or 64.858 degrees. This will predict the mean of the observations at this point (there is more to do by hand to obtain the prediction interval).

