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Complex Numbers 
 
This handout contains a complete review of complex numbers, leading up to writing complex numbers 
in polar form and applying DeMoivre’s Theorem. 
 

1. Imaginary Numbers 
 
Before we introduce the notion of a complex number we must first introduce one of the elements of a 
complex number, an imaginary number. 
 

Imaginary numbers are numbers which are given by the√−1 or some multiple of this.  By a multiple of 

this, we can mean anything like 2√−1or we might mean √−4  (remember that these two are the same, 

from properties of square roots: √−4 = √4√−1 = 2√−1).  In both cases we have a negative under the 
square root sign.  When we learned basic algebra, we learned that these numbers have no value in the 
real world.  There are no real numbers that we can multiply together to get any negative 
number.  When we have encountered these numbers in the past, we simply discarded them as 
meaningless.  What we are going to do now with imaginary numbers, and then with complex numbers in 
pretend they exist and see where this gets us.  It's amazing how much of math was originally done like 
this... even negative numbers and zero were mere fantasy until someone came up with a use for 
them.  And as one can see if one ever takes physics, engineering or any higher level math courses, there 
are a lot of ways that imaginary and complex numbers turn out to be both useful and meaningful. 
 
In order to help us deal with these imaginary numbers, we are going to first get rid of the square 
roots.  Whenever we find a negative under the square root, we can always separate out the factor of 

√−1  as we did in the example above.  Then we are going to replace that √−1 with the letter i.  This 

letter i stands for the imaginary number, the √−1.  So that now 2√−1  can be written as 2i.  (It should 
be noted here that in some disciplines, other characters are used.  In engineering for instance, it's 
common to represent the imaginary number with a j, because i is used for current.  However, we will 
use i throughout our discussion here.) 
 

Because i is defined to be √−1, i also has another important property: i2 = -1.  We can use this property 
to determine other powers of i, as well as the value one obtains when multiplying numbers containing i.  
 
Worked Examples. 
 
Example 1. Rewrite the following number as an imaginary number containing i.  Reduce the square 
roots as much as possible. 

√−18 
 

Remember, first factor out the √−1, giving us√18√−1 = √9√2√−1 = 3√2𝑖.  Note that the i is outside 
the square root. 
 
Example 2. Add the following imaginary numbers: 2i and 3i. 
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Well, one adds 2i + 3i just like one adds 2x + 3x.  They are like terms, so add the coefficients.  2i + 3i = (2 
+ 3)i = 5i. 
 
Example 3. What is i3?  i4? i17?  i95? 
 
i3 = i2i = (-1)i = -i.  Use the definition of i2 = -1 to reduce this problem. 
 
i4 = (i2)i2 = (-1)*(-1) = 1.  Again, we used the definition of i2 = -1.  We'll use this property in the next 
example, too. 
 
i17 = i16i = (i4)4i = (1)4i = i.  We have an odd number, so separate out one of the i's to make one of the 
factors even.  See how the exponent divides by 4?  We can use here the property from the previous 
example, that i4 = 1 to reduce the problem further. 
 
i95 = i94i = (i2)47i = (-1)47i = (-1)i = -i.  As with the previous problem, we have an odd exponent, so we factor 
out one of the i's and attempt to reduce what remains.  (Notice that we are only reducing using even 
powers.)  The exponent 94 isn't divisible by 4, so we will use the original definition to reduce this term to 
a power of i2.  (-1) to any odd power is still -1. 
 
Notice that powers of i go through a cycle, i, -1, -i, 1, i, -1, -i, 1, ...  (each number in this list is i, i2, i3, i4, i5, 
...) 
 
Example 4. Find the value of (3i)(4i). 
 
Just as though we were multiplying (3x)(4x), we will multiply the coefficients and the 'variables'.  So 
(3i)4i = (3∙4)*(i∙i) = 12i2 = 12(-1) = -12.  That last step used the definition i2 = -1. 
 
Problem Solving Tips. 

❖ If you feel like dealing with imaginary numbers is confusing because you don't understand what 

the √−1 really is, try not to think about it, and instead try to think of i as you would a variable, 
it's an unknown value, but it works pretty much the same as dealing with an x. 
 

❖ When adding imaginary numbers you add them like as you would like terms, add the 
coefficients. 

 
❖ When multiplying imaginary numbers, multiply them as one would with variables... multiply the 

coefficients and add the exponents of the variable. 
 

❖ When reducing powers of i, if it's even, remember, you can divide the exponent by two, and 
then raise (-1) to that new power using the definition of i.  If the exponent is odd, factor out an i, 
and then reduce the factor with the now even exponent. 

 
❖ Make sure that your final answer has no power of i greater than 1. 

 
 
Practice Problems. 
1. Rewrite the following as imaginary numbers. 

    a. √−9          b. √−64        c. √−56         d. √−12        e. √−125          f. √−162        g. √−3 
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2. Add the following imaginary numbers. 

    a. i + 3i           b. 2i - 4i           c. 
1

2
𝑖 +

1

4
𝑖       d. 

1

3
𝑖 −

1

5
𝑖 

3. Multiply the following imaginary numbers. 

    a. (i)4i             b. (-i)(-6i)         c. i2i5              d. 
2

3
𝑖 ∙

3

4
𝑖  

4. Simplify the following imaginary numbers. 
    a. (i + 2i)(3i)    b. (-i - 7i)(i2)    c. (4i)(i2 - 3i) 
5. Reduce the following imaginary numbers as much as possible, 
    a. i6               b. i13                c.  i23               d. i56              e. i81                f. i107              g. i4025 
 
 

2. Complex Numbers.  
 
Complex numbers are the sum of a real number (the kind we're used to working with) and an imaginary 
number.  We usually write complex numbers in the form a + bi, where a and b are both real numbers, 

and the letter i indicates which of these elements is the imaginary number √−1.  Let's take a moment to 
introduce some terms and notation we are going to use in referring to complex numbers. 
 
z is the variable we use to refer to complex numbers, rather than x. 
 
Complex numbers are made up of a real part and an imaginary part.  Re(z) is the notation we use to 
refer to the real part of a complex number.  Im(z) is the notation we use to refer to the imaginary part of 
a complex number.  When a number is written in the form z = a + bi, Re(z) = a, and Im(z) = b. 
 
The most common way we encounter complex numbers are through applying the quadratic formula to 
quadratic equations which have no real solution. [To refresh our memories, recall that a quadratic 
equation is of the form ax2 + bx + c = 0.  The quadratic formula helps us find the values of x that makes 

this equation true. 𝑥 =
−𝑏±√𝑏2−4𝑎𝑐

2𝑎
 .  Remember that in our formula, the a, b, c refer back to the 

coefficients in our original quadratic equation.] 
 
Consider the example x2 + x + 1 = 0.  This equation can't be factored to find a solution, so we can go to 
the quadratic formula to find a solution.  Unlike the equation x2 + 3x + 1 = 0, when we use the quadratic 

formula, we end up with a negative under the square root: 𝑥 =
−1±√12−4(1)(1)

2(1)
=

−1±√−3

2
=

1

2
±

√3

2
𝑖. 

Notice, that when we simplify this expression as much as we can, we end up with a real part, -1/2 in this 

case, and an imaginary part, 
√3

2
𝑖 .  Just as when we end up with real solutions, we have two solutions 

whenever the number under the square root is not negative.  These two roots are known as complex 
conjugates of each other. 
The complex conjugate, notated by 𝑧̅, is found by making the imaginary part of z the opposite sign.  So, 

for instance, if z = a + bi, then 𝑧̅ = a - bi.  In our example above, one solution is 
1

2
+

√3

2
𝑖 and the other 

is 
1

2
−

√3

2
𝑖. 

 
Complex numbers allow us to make generalizations about polynomials that would not be possible using 
just real numbers.  The most important of these generalizations is the Fundamental Theorem of Algebra, 
which states that every polynomial of degree n has exactly n roots (counting real, complex and repeated 
roots). 

Answers 

1. a. 3i, b. 8i, c. 2√14𝑖 , d. 2√3𝑖 , e. 5√5𝑖, f. 

9√2𝑖 , g. √3𝑖. 2. a. 4i, b. -2i, c. 
3

4
𝑖, d. 

2

15
𝑖 . 

3. a. -4, b. -6, c. -i, d. -1/2. 4. a. -9, b. 8i, c. -
4i -12. 5. a. -1, b. i, c. -i, d. 1, e. i, f. -i, g. i.  
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One of the consequences of this theorem is that every polynomial with real coefficients will have an 
even number of complex roots.  That even number may be zero, or it will be two, four, six, etc.  These 
roots will come in pairs of complex conjugates. 
 
We want to be able to perform basic operations on complex numbers as well, such as addition, 
subtraction, multiplication and division. 
 
When we are doing addition and subtraction, we are going to distribute signs and add like terms just as 
we would as if we are using variables.  For example: z1 = 3 - 4i  and z2 = 2 + 6i,  then z1 + z2 = (3 - 4i) + (2 + 
6i) = (3 + 2) + (-4 + 6)i = 5 + 2i.  And z1 - z2 = (3 - 4i) - (2 + 6i) = (3 -2) + (-4 - 6)i = 1 - 10i. 
 
When we are doing multiplication, at first, we are also going to treat complex numbers as though we are 
dealing with a single variable, and FOIL. So z1z2 = (3 -4i)(2 + 6i) = 6 + 18i - 8i - 24i2 = 6 + 10i - 24i2.  But we 
aren't done, because we have to simplify i2.  Remember, i2 = -1. So 6 + 10i - 24i2 = 6 + 10i - 24(-1) = 6 + 
10i + 24 = 30 + 10i. 
 
When we do division, we have to first remove any imaginary numbers from the denominator.  Consider 

a number like 
4

2+3𝑖
.  In order to remove the imaginary number from the denominator, we are going to 

multiply this fraction by  
𝑧2̅̅ ̅

𝑧2̅̅ ̅
=

2−3𝑖

2−3𝑖
 where z2 is the complex number in the denominator.  One of the 

things we didn't talk about before when we dealt with complex conjugates is that when we multiply a 
complex number by its conjugate the result is a purely real number.  It's just like multiplying the 
difference of squares formula, the middle terms drop out because they are of different signs.  So for this 

example z2 is 2 - 3i.  So to reduce this problem, we do the following calculation: 
4

2+3𝑖
∙

2−3𝑖

2−3𝑖
=

8−12𝑖

4−9𝑖2 =
8−12𝑖

4+9
=

8

13
−

12

13
𝑖. 

 
This method of eliminating the imaginary number in the denominator is very similar to the process we 

use to rationalize denominators in expressions like  
1

√2+√3
. 

 
It is often useful to look at complex numbers visually.  When we want to look at real numbers, we draw 
a one-dimensional number line and each point on that line represents a unique real number.  But when 
we want to look at complex numbers, because they have both a real and an imaginary part, we are 
going to need not one, but two dimensions.  This means that complex numbers are graphed not on a 
line, but on a plane.  We can treat complex numbers then like we would any other point in a plane, as a 
Cartesian coordinate, where the x-coordinate or first coordinate is the real part or Re(z), and the y-
coordinate or second coordinate is the imaginary part or Im(z).  Now a + bi can be represented as simply 
(a, b). 

 
The complex plane then looks like the picture at left. 
The corners of the center square then are, starting in the first 
quadrant, 1 + i, second quadrant, -1 + i, third quadrant, -1 - i, 
and fourth quadrant, 1 - i. 
 
We will do more with plotting complex numbers in the plane 
when we move on to Complex Numbers in Polar and 
Trigonometric Form. 
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 Worked Examples.  
 
Example 5.  State Re(z) and Im(z) for the following complex numbers. 
     a. z = c + di              b. z = 3 - 4i             c. z = 5                  d. z = -4i 
 
a. Re(z) = c, Im(z) = d;   b. Re(z) = 3, Im(z) = -4;  c. Re(z) = 5, Im(z) = 0;   d. Re(z) = 0, Im(z) = -4 
 
We report Re(z) to be the part of a complex number lacking an i; we report Im(z) to be the part of the 
complex number which is attached to the i, but Im(z) is just the coefficient in front of the i, not 
the i itself.  Also note the either the real or imaginary part may be 0. 
 
Example 6. Give the real and imaginary parts of the solutions to the quadratic equation 2x2 - x + 3 = 0. 

Use the quadratic formula to get =
−(−1)±√(−1)2−4(2)(3)

2(2)
=

1±√−23

4
=

1

4
±

√23

4
𝑖 . Re(x) = 

1

4
, Im(x) = ±

√23

4
𝑖. 

 
Example 7. Give the complex conjugate of a. z = 4 - 6i, b. z = 5, c. z = i 
 
To find the complex conjugate, just change the sign of the imaginary part.  For a. 𝑧̅ = 4 + 6i; for b. 𝑧̅ = 5 
because there is no imaginary part, it's just like 5 + 0i, and 5 - 0i is exactly the same thing; for c. 𝑧̅ = -i. 
 
Example 8. For the equation x4 + 3x3 + 6x2 + x - 4 = 0, how many roots does this polynomial have? 
Since the highest degree term is x4, this is a degree-4 polynomial, so it has to have 4 roots. 
 
Example 9. Add and subtract the following complex numbers: z1 = 2 + 4i, z2 = -7 + 3i. 
 
When we add we get 2 + 4i + (-7 + 3i) = (2 - 7) + (4 + 3)i = -5 + 7i. 
 
When we subtract, we get 2 + 4i - (-7 + 3i) = 2 + 4i + 7 - 3i = (2 + 7) + (4 - 3)i = 9 + i. 
 
Example 10. Multiply and divide the following complex numbers: z1 = 1 + i, z2 = 3 - 4i 
z1z2 = (1 + i)(3 - 4i) = 3 - 4i + 3i - 4i2 = 3 - i - 4i2 = 3 - i - 4(-1) = 3 - i + 4 = 7 - i. 
 
Problem Solving Tips. 
 

❖ When dealing with complex numbers, there are some strategies you can use: 
 

❖ If you are having trouble getting your head around what a complex number is exactly, you can 
think of the i term just like a variable,  Complex numbers like 2 + 9i will add, subtract and 
multiply exactly as 2 + 9x does.  It may help you to think of complex numbers in terms of having 
certain rules to follow.  You'll find, after working with them for a while, that they begin to seem 
like they make more sense when they seem less unfamiliar.  However, you can also try some 
links at the bottom of the page for additional explanations. 

 
❖ Remember to remove complex numbers from a denominator using the complex conjugate 

before attempting to simplify further. 
 

❖ Don't forget to replace i2 with (-1). 
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❖ When you are asked for Im(z), the answer never has an i in it. 
 
Practice Problems. 
1. State Re(z) and Im(z) of the following complex numbers: 

    a. 4 + 6i                 b. 
1−3𝑖

2
           c. -i                 d. 1/4 

2. Find the real and imaginary parts of the solutions to the following polynomials: 
    a. 5x2 - 12x -3 = 0      b. -3x2  + 2x - 3 = 0         c. x3 - 1 = 0 
3.  Find the complex conjugates 𝑧̅ of: 
    a. z = 1 + 0.4i           b. z = 3 - 5i         c. -.0006i        d. i2 
4. How many real or complex roots do the following polynomials have? 
    a. x3 - 1 = 0              b. x5 + 6x -2 = 0           c. x6 + 5x4 - 3x2 - x + 4 = 0 
5. Given the following complex numbers: z1 = 2 - i, z2 = 3 + 2i, z3 = 4 - 5i, z4 = 2 + 4i, z5 = -2 - 3i, simplify the 
following expressions: 
   a. z1 + z2            b. z2 + z3         c. z3 - z4         d. z4 - z5         e. z5z1        f. z1z3         g. z2/z4        h. z3/z5 
6. Plot the following complex numbers in the plane: 
    a. 2 - i                b. i                 c. 1 + 3i           d. 4                e. 0 
 
 
 
 
 
 
 
 
 
 
 
 
3.  Polar Form and Exponential Form 
 
In addition to representing complex numbers in Cartesian form as a + bi, we can also represent complex 
numbers in polar or trigonometric form.  The form gets its name because the form depends on polar 
coordinates containing an angle, the distance in radians from the positive x-axis, and a radius, the 
distance from the origin to the point in the plane.  It is sometimes called trigonometric form because the 
form of the complex number contains a cosine and a sine.  These forms of complex numbers are 
equivalent, but they serve different purposes.  We will come to what these are later on. 
 
If we begin with a complex number in Cartesian form, we can determine its polar form by 
calculating r and t, where r is the radius and t is the angle. 
 
To find r for a complex number we, need to find the distance from the origin.  We can use the distance 

formula, and we get the value of = √𝑎2 + 𝑏2 , so for the complex number z = 3 + i, 𝑟 = √32 + 42 =

√9 + 16 = √25 = 5 .  We also sometimes see r indicated by the notation |z|, the modulus of z, or the 
length of z.  These notations are equivalent.  (Note that students sometimes confuse the similarity of 
notation with the absolute value.  They are similar in that the answer is always positive, but you can’t 
find the value of |z| by just making all the signs positive.) 
 

Answers: 

1. a. Re(z) = 4, Im(z)=6; b. Re(z) =
1

2, Im(z) = −
3

2; Re(z) = 0, 

Im(z) = -1; Re(z) = 
1

4
, Im(z) = 0.  2. a. Re(x) =

6±√51

5
 , Im(x) = 0; 

b. Re(x) = −
1

3, Im(x) = ±
2√2

3; c. Re(x) = 1, Im(x) = 0 AND 

Re(x) = −
1

2
, Im(x) = ±

√3

2
. 3. a. 1 - 0.4i, b. 3 + 5i, c. 0.0006i, d. 

-1 (this number is real when it's reduced, so it's the same). 
4. a. 3, b. 5, c. 6. 5. a. 5 + i, b. 7 - 3i, c. 2 -9i, d. 4 + 7i, e. -7 - 

4i, f. 3 - 14i, g. 
7

10−
2

5𝑖, h. 
7

13+
22

13𝑖. 6. Plot the points with 

the following coordinates (2, -1), (0, 1), (1, 3), (4, 0), (0, 0). 
 



Betsy McCall 

7 | P a g e  
 

Then we need to find the angle t.  To do this, we can think of the complex number forming a right 
triangle with the x-axis.  From trigonometry, we can use the inverse tangent function to find the angle, 

given by 𝑡 = 𝑡𝑎𝑛−1 (
𝑏

𝑎
)  𝑜𝑟 𝑡 = arctan (

𝑏

𝑎
)  .   

 

Example 11. For the complex number 3 + 4i, the angle we get is 𝑡𝑎𝑛−1 (
4

3
) ≈ 0.93 radians or 53.1°.  We 

should double check our answer to make sure our angle is in the right quadrant because it may be 
correct, or we may need to add π radians or 180 degrees to get it into the appropriate quadrant.  (Not 
sure which quadrant the complex number is in?  Graph it in the Cartesian plane.)  This angle is 
sometimes referred to as the argument of z or arg(z). 
 
To get the polar form, we now use the same transformation that we would for any parametric 
representation of the x-y plane.  We set x = rcos(t) and y = rsin(t).  But remember, the x-coordinate here 
is the real part, and the y-coordinate here is the imaginary part, so a + bi becomes rcos(t) 
+ risin(t).  Check our answer. 5cos(.93) ≈ 2.99 and 5sin(.93) ≈ 4.01.  This difference here is just a rounding 
error. 
 
These forms of complex numbers also arise from another source, that is in exponential 
form.  Exponential form and polar form are closely related through the formula:  reit = r[cos(t) + 
isin(t)].  (This equation is referred to as the Euler equation.) This exponential form of complex numbers 
arises frequently in differential equations.  The properties of trigonometric forms of complex numbers 
can be proved using the exponential form as a starting point and applying well-known properties of 
exponents. It is through this Euler relationship that we know that the r and the t in both forms are the 
same, so the same calculations can be used to determine either form.  The exponential form of 3 + 4i, 
using our earlier results is 3 + 4i ≈ 5e.93i. 
 
The special properties of the polar form are derived from the properties of the exponential form.  For 
instance, what happens when we multiply two complex numbers in exponential form together?  
 
Example 12. Consider (2e.4i)(3e.6i).  We are going to multiply the coefficients and add the exponents 
(since the base is the same in both terms), giving us 6ei.  That was a lot easier than working with these 
numbers in Cartesian form.   
 
Compare: 2e.4i = 2cos(.4) + 2isin(.4) = 1.84 + .779i, and 3e.6i = 3cos(.6) + 3isin(.6) = 2.48 + 1.69i; now 
multiply (1.84 + .779i)*(2.48 + 1.69i) by FOILing.  4.56 + 3.11i + 1.93i + 1.32i2 = 3.24 + 5.04i.   
 
What's 6ei? 6cos(1) + 6isin(1) = 3.24 + 5.05i.  The difference here is just a rounding error we could easily 
get rid of by carrying an extra digit. 
 
Since exponential and polar form are the same, we can also represent this calculation in the following 
way. z1z2 = r1r2[cos(t1+t2) + isin(t1+t2)].  Just as with the exponential form, we are adding the angles (the 
exponent portion of the exponential form) and multiplying by the length or coefficient of the 
exponential form.  Just as we saw in the example above, the result is another calculation in polar or 
trigonometric form.  We can carry on this generalization for any number of complex numbers we wish to 
multiply. 
Division is similarly much easier than in Cartesian form.   
 



Betsy McCall 

8 | P a g e  
 

Example 13. Consider 
6𝑒𝜋𝑖

2𝑒
𝜋
2

𝑖
 .  When we do division of exponentials, where before we added exponents, 

here we subtract them, and divide the coefficients, giving us 3e(π/2)i.  If we wanted to convert this now to 

Cartesian coordinates, we'd get 3cos(π/2) + 3isin(π/2) = 0 + 3i.  Compare that with  −
6

2𝑖
.  

 
 There's no need to find the complex conjugate to solve this problem.  And what did we do?  Again, we 
can represent  this process in polar form as z1/z2 = (r1/r2)[cos(t1 - t2)+ isin(t1 - t2)].  Just as in the 
exponential form, we subtracted  the angles, and divided the coefficients.  [Note: 6cos(π) + 6isin(π) =  
6(-1) + i(0) = -6; and 2cos(π/2) + 2isin(π/2) = 0  + 2i(1) = 2i.] 
 
One of the most powerful properties of the exponential and polar forms has to do with raising complex 
numbers to powers or taking roots of complex numbers.  Consider a simple exponential, like et.  If we 
wish to raise this to a large power, like (et)6, we multiply the exponent by the new power, giving us 
e6t.  This is the same process we use to determine large powers of complex numbers.   
 
Example 14. Consider the complex number 1 + i.  If we wanted to find (1 + i)6, we have two ways to 
approach this.  We can multiply it out in some way (either by hand or by applying the binomial 
theorem), or we can convert it into an exponential form (or polar form as we'll see later) and raise that 
to the sixth power.  Let's try it both ways. 
 
Using the binomial theorem: 

(1 + 𝑖)6 = 16 + 6 ∙ 15𝑖 + 15 ∙ 14𝑖2 + 20 ∙ 13𝑖3 + 15 ∙ 12𝑖4 + 6 ∙ 1𝑖5 + 𝑖6

= 1 + 6𝑖 − 15 − 20𝑖 + 15 + 6𝑖 − 1 = −8𝑖 
 

OR  𝑟 = √12 + 12 = √1 + 1 = √2 and = 𝑡𝑎𝑛−1 (
1

1
) =

𝜋

4
 , thus (1+i)6 = (√2𝑒

𝜋

4
𝑖)

6

.  Thus, (√2)6 = 8, and 

(𝑒
𝜋

4
𝑖)6 = 𝑒

3𝜋

2
𝑖.  If we convert this back through polar form, we get 8 cos (

3𝜋

2
) + 8𝑖 sin (

3𝜋

2
) = 0 +

8𝑖(−1) =  −8𝑖. 
 
We can do this directly in polar form through the following equation zn = rn[cos(nt) + isin(nt)].  In words, 
raise the length of the complex number to the desired power, and multiply the angle by the desired 
power. 
 
We can do roots very similarly, but where we multiply in exponential form for multiplication, we will 
now divide instead (since roots can be represented as fractional exponents, square root is a 1/2 
exponent, cube root is a 1/3 exponent and so forth).  The rooting process is most useful for determining 
the roots of unity, or the roots of 1. 
 
Example 15. Consider the equation x5 = 1.  What are the values of x that make this work?  Well, we 
know one of them straight off the bat, 15 = 1, but this equation is equivalent to the expression x5 - 1 = 
0.  We said before that because this is a fifth degree equation, there HAS to be five answers, five total 
values that, when we multiply the number by itself five times, we get a value of 1 at the end.  So far, 
we've found only one of these values, what are the other four?  To introduce our process, let's first start 
out by checking out our first value using exponential/polar form.  How can we write 1 + 0i as a complex 
exponential?  What is our length?  Well, clearly, it's 1.  What about our angle, well, it turns out to be 0, 
since our complex number is on the positive x-axis, and tan-1(0) = 0.  So, 1 = 1e0i.  To take the root of this 
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number, the fifth root in this case, we are going to raise this number to the 1/5 power.  (1e0i)1/5 = 
11/5*e0i/5 = 1e0i = 1.  We get back to where we started, at 1, because 1 to any power is 1, and 0/5 is still 0. 
 
The thing about angles, though, is that eventually you come around full circle if your angle is big 
enough.  Big enough, in radians, is 2π.  It's still true if you add another 2π to get 4π, and another 2π to 
get 6π and so on.  In angular terms 0 = 2π = 4π = 6π = 8π.  But it's exactly these angles that are going to 
get us our other four roots.   
 
Redo the calculation above, but replace 0i with 2πi.  (1e2πi)1/5 = 11/5*e2πi/5 = 1e2πi/5 = cos(2π/5) + isin(2π/5) 
≈ .3090 + .9511i.  (If you can run your calculator in complex number mode, you can check it out, raise 
this number to the fifth power and you get 1, especially if you carry several digits.)   
 
We can repeat this process for the other angles. (1e4πi)1/5 = 11/5e4πi/5 = 1∙e4πi/5 = cos(4π/5) + isin(4π/5) ≈   
 -.8090 + .5878i.   
 
(1e6πi)1/5 = 11/5e6πi/5 = 1∙e6πi/5 = cos(6π/5) + isin(6π/5) ≈ -.8090 - .5878i.    
 
(1e8πi)1/5 = 11/5e8πi/5 = 1∙e8πi/5 = cos(8π/5) + isin(8π/5) ≈ .3090 - .9511i.   
 
Those are my five roots, and notice that they come in complex conjugate pairs, just as we would have 
expected.  We could continue like this, but if we do, we will just start to repeat the numbers we already 
have. 
 

To describe this procedure directly in polar form we might write  √𝑧
𝑛

= 𝑟
1

𝑛 [𝑐𝑜𝑠 (
𝑡+2𝑘𝜋

𝑛
) + 𝑖𝑠𝑖𝑛 (

𝑡+2𝑘𝜋

𝑛
)] , 

where again we are taking just the primary root of the length of the complex number, and we are 
dividing the angle by number of the root.  The 2kπ term refers to the process of adding multiples of 2π 
and repeating the process until it either starts to repeat, or we achieve the desired number of roots. 
 
It should be noted that polar and exponential forms are less useful for adding and subtracting complex 
numbers.  Convert to Cartesian form to perform these operations, and then convert back if need be. 
 
Worked Examples. 
 
Example 16. Find the polar form and exponential form of the following complex numbers: 
a. 1 + i                         b. -i                     c.  3                       d. -2 - 3i 

For a, we find |z| = √2, and  𝑡 = 𝑡𝑎𝑛−1 (
1

1
) =

𝜋

4
 , thus 1 + i = √2cos(π/4) +√2𝑖sin(π/4) =√2𝑒

𝜋

4
𝑖 . 

 
For b, we find |z| = 1 and t = tan-1(1/0).  Tangent is undefined for the angle π/2, thus this is either that or 
that plus π, and since -i is along the negative y-axis, this case  is the second choice, 3π/2.  Thus polar 
form is cos(3π/2) + isin(3π/2) and exponential form is e3π/2i. 
 
For c, the length is clearly 3, and the angle is 0 since 3 is on the positive x-axis.  The polar form is 3cos(0) 
+ 3isin(0), and the exponential form is 3e0i or just 3. 
 
 

For d, we find |z| = √13 .  And the angle is = 𝑡𝑎𝑛−1 (
−3

−2
) ≈ 0.983 , but that angle is not in the third 
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quadrant where our complex number is, so we add 3.14159 to get ≈4.12.  Thus, the polar form I is 

≈ √13cos(4.12) + √13isin(4.12), and the exponential form is ≈ √13e4.12i. 
 
Example 17. Multiply. a.  (2e.54i)(3.4e-.89i)                 b. 4[cos(.12) + isin(.12)]∙3[cos(-.7) + isin(-.7)] 
 
Multiply the coefficients and add the angles/exponents.  For a, 2∙3.4 = 6.8 and .54 + -.89 = -.35; thus 
(2e.54i)(3.4e-.89i) = 6.8e-.35i.   
 
For b, 4∙3 = 12 and .12 + -.7 = -.58; thus 4[cos(.12) + isin(.12)]∙3[cos(-.7) + isin(-.7)] = 12[cos(-.58) + isin(-
.58)]. 
  

Example 18. Divide. a. 
4𝑒

3𝜋
2

𝑖

2𝑒
𝜋
4

𝑖
            b. 

6[cos(
𝜋

6
)+𝑖 sin(

𝜋

6
)]

3[cos(
𝜋

2
)+𝑖 sin(

𝜋

2
)]

  

Divide the coefficients, and subtract the angles/exponents.  For a, 4/2 = 2, 3π/2 - π/4 = 5π/4; thus 

 
4𝑒

3𝜋
2

𝑖

2𝑒
𝜋
4

𝑖
= 2𝑒

5𝜋

4
𝑖 .   

 

For b, 6/3 = 2 and π/6 - π/2 = -π/3; thus  
6[cos(

𝜋

6
)+𝑖 sin(

𝜋

6
)]

3[cos(
𝜋

2
)+𝑖 sin(

𝜋

2
)]

= 2 [cos (−
𝜋

3
) + 𝑖 sin (−

𝜋

3
)]. 

  
Example 19. Simplify.  (2 - i)5.  State your answer in Cartesian form. 
 

First convert 2 - i either to polar or exponential form.  |z| = √22 + (−1)2 = √4 + 1 = √5 .  And 𝑡 =

𝑡𝑎𝑛−1 (
−1

2
) ≈ −0.464.  Check the quadrant.  2 - i, is the point (2, -1) in the complex plane, that's in the 

fourth quadrant, and so is –0.464 radians, so we don't have to add any angles.  The exponential form for 

2 - i is ≈ √5𝑒−0.464𝑖 and the polar form is  √5[cos(−0.464) + 𝑖 sin(−0.464)].  In order raise these 
numbers to the fifth power, we raise the coefficient to the fifth power, and then multiply the angle by 

5.  (√5)
5

= 25√5, and 5(-0.464) = -2.32.  We should reduce our angles as much as possible.   

 
Generally, it's okay to use negative angles as long as they are less than π, though preferably, π/2.  When 
they get bigger in magnitude than that, we want to, in this case, add 2π.  -2.32 + 2π = 3.96.  We would 
do the same thing if we had a positive angle larger than 2π, but then we would subtract to reduce the 
angle, as many times as it necessary.   
 

Thus (2 - i)5 ≈ 25√5𝑒−2.32𝑖 = 25√5𝑒3.96𝑖 and 25√5[cos(−2.32) + 𝑖 sin (−2.32)] = 25√5[cos(3.96) +
𝑖 sin (3.96)] in polar form. We can now find out what this is in Cartesian form by evaluating the polar 
form:  38.07 + 40.93i.  If you have a calculator than can check the calculation for you, you get 38 + 41i.  
To avoid more of the rounding error, carry more digits. 
 

Example 20. Simplify √2 − 𝑖
4

 . State your answer in Cartesian form. 
 
First we need to covert 2 - i to exponential or polar form.  We did this in the previous worked 

example.  2 - i ≈ √5𝑒−0.464𝑖=√5[cos(−0.464) + 𝑖 sin(−0.464)].  To find the fourth root, we need to 

take the fourth root of the coefficient, and divide the angle/exponent by four. √√5
4

= √5
8

≈ 1.22 and  

 -0.464/4 = -0.116.  Thus√2 − 𝑖
4

≈ √5
8

[cos(−0.116) + 𝑖 sin (−0.116)].  To get the Cartesian form, 
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evaluate the polar form: 1.21 - .142i.  If your calculator has the ability to work with complex numbers, 
you can check this by entering (2 - i)1/4 ≈ 1.21 - .141i. 
 
Problem Solving Tips. 

❖ For problems involving multiplication and division, use whichever method you feel most 
comfortable with.  If you are given Cartesian form, and like that method, then use that 
method.  If you are familiar with the binomial theorem, you can use that method to get around 
converting to exponential form as well--although, remember you have to simplify and reduce all 
powers of i. 
 

❖ You have to find two values regardless of whether or not you use polar or exponential 
form.  Those values are the modulus of the complex number, and the angle. 

 
❖ The modulus depends on the Cartesian form.  It's the distance from the origin to the point in the 

complex plane that represents the complex number in question.  You can also think of it as the 
hypotenuse of a right triangle with side a and b. 

 
❖ You have to use the exponential or polar form to solve for roots of unity or roots in general.  You 

can't use the Cartesian form for this. 
 

❖ For roots of unity, remember that you are looking for the same number of roots as the power of 
the equation.  There are five fifth roots, and six sixth roots, and so on.  To find each root, add 2π 
and repeat the calculation. 

 
❖ When calculating polar or exponential form, make sure that you check to see that your angle is 

in the correct quadrant.  You may need to add π. 
 

❖ When using the polar or exponential form for multiplication, you may need to add/subtract 
multiples of 2π to keep the angle generally between -π and 2π. 

 
❖ When doing roots of unity, check that your complex answers come in pairs of complex 

conjugates. 
 

 
Practice Problems. 
1. Find the polar form of the following complex numbers; state the modulus and the argument: 
    a. 1 - i             b. -2               c. -3 + i            d. 4 + 6i 
2. Multiply the following complex numbers as directed, report your answers in polar form: 
    a. (1 + i)(2 - i)           b. (3e-4i)(6e3i)            c. 2[cos(.4) + isin(.4)]∙0.1[cos(2.3) + isin(2.3)]      d. (3 - i)(2e.01i) 
3. Divide the following complex numbers as directed, report your answers in exponential form: 

    a. 
4−1

2+3𝑖
             b. 

7𝑒𝜋𝑖

14𝑒
7𝜋
4

𝑖
            c.  

8[cos(
𝜋

6
)+𝑖 sin(

𝜋

6
)]

10[cos(3)+𝑖 sin(3)]
          d. 

1−5𝑖

2𝑒7.1𝑖 

4. Simplify.  State your answer in Cartesian form. 
    a.  (3 + 3i)7           b. (1 - 2i)4        c. (5 + 3i)8 
5. Simplify. 

    a. √4 − 𝑖
3

              b. √3 + 4𝑖          c. √8 − 15𝑖
6

  
6. Find the following roots of unity. 
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a. √1
4

, b. √1
6

, c. √1
7

, d. √1
9

. 
 
Important Note! 
 
While doing these examples, I 
have converted values to 
decimal places in many cases.  
In many cases, this is because 
the exact values are ugly and 
difficult to find, or in other 
cases, we’ve gone through 
the exact values and then 
given decimal values to 
compare answers.  When 
doing problems in class, you 
should take care to follow 
directions on problems of this 
type and be prepared to give 
exact answers unless the 
question specifically asks you 
to round to a certain number of decimal places.  Exact answers together with decimals is okay.  Decimals 
instead of exact answer is not. 

Answers: 

1. a. |z| = √2, arg(z) = -π/4, √2 [cos(π/4) +isin(π/4)].     b. |z| = 2, arg(z) = 

π, 2[cos(π)+isin(π)].     c. |z| = √5, arg(z) = -.32175, √5 [cos(-.32175) + 

isin(-.32175)].     d. |z| = 2√13, arg(z) = .98279, 2√13[cos(.98279) + 

isin(.98279)]. 2. a. √5 [cos(-.32175) + isin(-.32175)].     b. 18[cos(-1) + 

isin(-1)].     c. 0.2[cos(2.7) + isin(2.7)].     d. 2√5 [cos(-.31175) + 

 isin(-.31175)]. 3. a. ට
17

13𝑒
−1.2278𝑖

 .     b. 
1

2𝑒
−

3𝜋

4
𝑖
 .     c. 

4

5𝑒
−2.4764𝑖

 .  

d. 
√26

2𝑒
−2.19021𝑖

=
√26

2𝑒
4.0929𝑖

. 4. a. 17496 - 17496i.     b. -7 + 24i.     

c. -506864 - 1236480i. 5. a. 1.598 - .13080i.     b. 2 + i.     c. 1.5776 - 
.28730i. 6. a. 1, -1, i, -i.     b. 1, 1/2 + .866i, -1/2 + .866i, -1, -1/2 - .866i, 1/2 
- .866i.     c. 1, .62349 + .78183i, -.2225 + .97497i, -.90097 + .43388i,  
-.90097 - .43388i, -.2225 - .97497i, .62349 - .78183i.    d. 1, .766 + .64279i, 
.17365 + .9848i, -1/2 + .866i, -.9397 + .342i, -.9397 - .342i, -1/2 - .866i, 
.17365 - .9848i, .766 - .64279i. 
 


